Responsive image
博碩士論文 etd-0719105-095335 詳細資訊
Title page for etd-0719105-095335
論文名稱
Title
奈米磨粒在工件運動所衍生之現象的探討:磨粒剛性與幾何形狀之效應
A study on phenemona induced by nano-particle motion upon work surface:effects of particle rigidity and geometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-23
繳交日期
Date of Submission
2005-07-19
關鍵字
Keywords
變質層、分子動力學、奈米磨粒、拋光
damage layer, polishing, nano-particle, Molecular Dynamics
統計
Statistics
本論文已被瀏覽 5645 次,被下載 1713
The thesis/dissertation has been browsed 5645 times, has been downloaded 1713 times.
中文摘要
本論文所要追求的是完美的拋光表面。完美的拋光表面包含了低粗度、低變質層等特性,除了完美的拋光表面外,也希望有方法可以提高拋光的工作效率。由於拋光是由磨粒對工件表面進行加工,因此磨粒的特性,如與工件間的吸附能力、磨粒剛性與磨粒外型,就成了直接影響加工結果的原因。為了能夠深入了解這些變數的影響,所以使用分子動力學進行電腦模擬。為了顧及電腦模擬的效率與精確度,在模擬剛性的過程中所使用的積分時間只有 sec,並且使用移動邊界法以節省模擬時間。對於剛性與吸附係數的調整,則是利用修改位能函數的方法來達成模擬。對於磨粒外型,則又因其運動型態的不同分為磨粒滑動時之外型與滾動時之外型兩種。模擬結果發現,剛性對於以滾動為運動狀態的磨粒,其變質層並無明顯的趨勢;滑動的磨粒如果其剛性越小,則變質層表現會較好。但是如果因剛性過弱而使磨粒產生嚴重變形時,則其變質層與表面粗度都會很差。在磨粒滑動之外型的模擬,如果前方角度較大,在低吸附係數下會因有較多的表面原子可移動到磨粒底部,而增加其變質層原子數與深度;如果底長變長,則會因接觸面較大,使變質層變多。磨粒滾動時之外型的模擬,坑洞磨粒由於其幾何外型的因素,與圓球磨粒相比,只需較小的吸附係數就可黏附起工件原子以增加移除量,但其表面粗度較差。

選用剛性低、接觸面小與前方角度大的磨粒的磨粒可以降低變質層厚度,但其表面粗度會因此變差;選用凹凸不平的磨粒則可以增加移除量,但其表面粗度也會變的較差。
Abstract
The surface phenemona in polishing process induced by nano-particle was studied in this thesis. The properties of particle, rigidity and geometry, are forced. A perfect polished surface includes lower roughness and thinner damage layer. Besides a perfect surface, how we get higher rate of remove is also an important thing. The goal is to get the relation between induced surface phenomena and properities of nano-particle. The M.D. (Molecular Dynamic) simulation is uesed in this thesis. The specicaly lowered integral timestep is second for simulating the rigidity of nano-particle with saving simulation time and geting accurate in simulation results. In order to simuate the nano-particle rigidity and adhesive effects between nanoparticle and work surface, the modified potential function is used. Considering the types of nano-particle motion which are pure rolling and sliding, the different geometric shapes are used .
In the results of simulation about the rigidity of particles, the phenomena induced by rolling particles and rigidity don’t have apparent correlation. For sliding particles, the lower rigidity and lower thick damage layer was. However, if the rigidity is too weak to hold the particle geometric shape, the damage layer thickness is larger. In the results of simulation about particle shapes, the sliding particle with larger front angle will indcue deeper damager layer. It’s because the more workpiece atoms could move to the bottom or rear of the particles to make more damaged atoms. If the length of particle bottom be increased, the interactive behavior between particle and work surface would become more violently to make deeper damaged layer. The rolling particle with scraggy surface can cohere more atoms than the ball particle even in the lower adhesive coefficient, but induced roughness will be higher .
目次 Table of Contents
目錄
謝誌………………………………………………………………………Ⅰ
目錄………………………………………………………………………Ⅱ
圖索引……………………………………………………………………Ⅳ
表索引……………………………………………………………………Ⅵ
中文摘要…………………………………………………………………Ⅷ
英文摘要…………………………………………………………………Ⅸ
第一章 緒論…………………………………………………………1
1.1前言…………………………………………………………………1
1.2拋光現況與瓶頸……………………………………………………2
1.3研究動機與目的……………………………………………………4
1.4研究方法與相關研究………………………………………………6
1.5內容說明……………………………………………………………8
第二章 分子動力學簡介與設定……………………………………9
2.1分子動力學的原理…………………………………………………9
2.1.1位能函數……………………………………………………9
2.1.2運動方程式………………………………………………11
2.2模擬設定…………………………………………………………12
2.2.1幾何邊界與熱邊界………………………………………12
2.2.2Verlet List與Link Cell………………………………13
2.2.3邊界移動法………………………………………………14
2.2.4平行運算…………………………………………………15
第三章 程式規畫與指標建立……………………………………17
3.1磨粒性質設計……………………………………………………17
3.1.1磨粒剛性的設計…………………………………………17
3.1.2滾動時磨粒的幾何形狀設計……………………………19
3.1.3滑動時磨粒的幾何形狀設計……………………………21
3.2指標………………………………………………………………22
3.2.1移除量…………………………………………………………22
3.2.2變質層…………………………………………………………23
3.2.3衍生之表面粗度………………………………………………25
第四章 模擬結果與現象歸納……………………………………27
4.1剛性效應…………………………………………………………27
4.2剛性效應歸納……………………………………………………28
4.3滑動時之外型效應………………………………………………29
4.4滑動時之外型效應歸納…………………………………………32
4.5滾動時之外型效應………………………………………………33
4.6滾動時之外型效應歸納…………………………………………34
第五章 論點與證明………………………………………………36
5.1滑動時外型效應之論點與證明…………………………………36
5.2滾動時外型效應之論點與證明…………………………………41
第六章 討論…………………………………………………………44
6.1模擬的應用………………………………………………44
6.1.1剛性的應用………………………………………44
6.1.2磨粒外形…………………………………………45
6.2模擬不足的地方…………………………………………47
6.3特殊外形的磨粒…………………………………………48
第七章 結論…………………………………………………………50
7.1結論………………………………………………………50
7.2貢獻………………………………………………………50
參考文獻……………………………………………………………52
參考文獻 References
參考文獻

【1】Y. T. Su, S. Y. Wang, and J. S. Hsiau, “On machining rate of hydrodynamic polishing process” , Wear, Vol.188, pp.77-87, 1995.
【2】 Y. T. Su, C. C Horng, J. Y. Sheen and J. S. Hsiau, “A Process planning strategy for removing non-axially symmetric form error by hydrodynamic polishing process” , Int. Mach. Tools Manufact., Vol.36, No. 2, pp. 1227-1245, 1996.
【3】Y. T. Su, C. C Horng, S. Y. Wang and J. S. H. Jang, “Ultra-precision machining by hydrodynamic polishing process” , Int. Mach. Tools Manufact., Vol.36, No. 2, pp.275-291, 1996.
【4】Y. T. Su and J. Y. Sheen, “A process planning strategy for removing arbitrary and axially symmetric profile by a polishing process” , Int. Mach. Tools Manufact., Vol.39, pp.187-207, 1999.
【5】 劉松河, 應用液動壓拋光法於工件表面粗度移除效率之實驗分析與探討, 國立中山大學碩士論文,2000.
【6】 陳勇維, 應用液動壓拋光法於工件表面終極粗度之初步探討, 國立中山大學碩士論文,2001.
【7】 蔡政旻, 不同工件表面波長對拋光法於表面粗度之改善極限的探討,國立中山大學碩士論文,2002.
【8】 劉炫佑, 奈米磨粒在工件上滾/滑動所衍生之加工現象:分子動力學分析,國立中山大學碩士論文,2004.
【9】 Louis G. Hector, Steven R. Schmid, “Simulation of asperity plowing in an atomic force microscope Part I:Experimental and theoretical methods” , Wear, Vol.215, p.247-256, 1998.
【10】 Steven R. Schmid, Louis G. Hector, “Simulation of asperity plowing in an atomic force microscope Part II:plowing of aluminum alloys” , Wear, Vol.215, p.257-266, 1998.
【11】 Te-Hua Fang, Cheng-I Weng, Jee-Gong Chang, “Molecular dynamics analysis of temperature effects on nanoindentation measurement” , Materials Science and Engineeringr, A357, p.7-12, 2003.
【12】 J.B. Adams, L.G. Hector, D.J. Siegel, H. Yu, J. Zhong , “Adhesion, Lubrication, and Wear on the Atomic Scale” , Surface. Interface Anal., 31, p.619-626, 2001.
【13】 W C D Cheong and L C Zhang, “Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation” , Nanotechnology , 11, p.173-180, 2000.
【14】 Hualiang Yu, James B Adams and Louis G Hector Jr, “Molecular dynamics simulation of high-speed nanoindentation” , Modeling and Simul. Mater. Sci. Eng. , 10, p.319-329, 2002.
【15】 Wun Chet Davy Cheong, Liang Chi Zhang, “Effect of repeated nano-indentations on the deformation in monocrystallinr silicon” , Journal of materials science letters , 19, p.439-442, 2000.
【16】 Uzi Landman, W. D. Luedtke, and Jianping Gao, “Atomic-Scale Issues in Tribology:Interfacial Junctions and Nano-elastohydrodynamics”, Langmuir , 12, p.4514-4528, 1996.
【17】R. Komanduri, N. Chandrasekaran, L.M. Raff, “M.D. Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting”, Wear , 242, p.60-88, 2000.
【18】Te-Hua Fang and Cheng-I Weng, “Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale”, Nanotechnology , 11, p.148-153, 2000.
【19】Liangchi Zhang, Hiroaki Tanaka, “Towards a deeper understanding of wear and friction on the atomic scale-a molecular dynamics analysis”, Wear , 211, p.44-53, 1997.
【20】R. Komanduri and N. Chandrasekaran, “Molecular dynamics simulation of atomic-scale friction,” Physical Review B , V. 61 Number 20, p.14007-14019, 2000.
【21】L.C. Zhang, K.L. Johnson and W.C.D. Cheong, “A molecular dynamics study of scale effects on the friction of single-asperity contacts” , Tribology Letters , Vol. 10 No. 1-2, p.23-28, 2001.
【22】 許政欽, 奈米磨粒在工件上滾動索引發現象之探討:分子動力法分析,國立中山大學碩士論文,2003.
【23】J.H. Irving and J.G.Kirkwood, “The statical mechanical theory of transport property. IV. The equation of hydro-dynamics” , J.Chem.phys., 18 , p.817-823, 1950.
【24】J.E. Lennard-Jones, “The Electronic structure of some diatomic Molecules ” , Transactions of the Faraday Society, 25 , p.668-686, 1929.
【25】K.Mylvaganam and L.C.Zhang, “Effect of oxygen penetration in silicon dur to nano-indentation ” , Nanotechnology, 13 , p.623-626, 2002.
【26】Murrary S. Daw and M.I. Baskes, “Embedded-atim method: Derivation and application to impurities, surfaces,and other defects in metals” , Physical Review B, Volume 29 Number 12 , p.6443-6453, 1984.
【27】Laurent J. Lewis, Normand Mousseau, “Tight-binding molecular-dynamics studies of defects and disorder in covalently bonded materials” , Computational Materials Science, 12 , p.210-241, 1998.
【28】J. Tersoff, “Modeling solid-state chemistry : Interatomic potentials for multicomponent systems” , Physical Review B, Volume 39 Number 8 , p.5566-5568, 1989.
【29】J.M. Haile, “Molecular dynamics simulation : elementary method” , Wiley, New York, 1992.
【30】Loup Verlet, “Computer “Experiments” on classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules” , Physical Review, 159 , p.98-103, 1967.
【31】M.P. Allen, D.J. Tildesley, “Computer simulation of liquides” , Oxford Science Publications
【32】K. Maekawa, A. Itoh, “Friction and tool wear in nano-scale machinning - a molecular dynamics approach” , Wear, 188 , p.115-122, 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code