Responsive image
博碩士論文 etd-0719105-153559 詳細資訊
Title page for etd-0719105-153559
論文名稱
Title
應用同步比較實現3.3伏特8位元250MHz取樣頻率14毫瓦特之電流模式類比數位轉換器
A 3.3V 8-bit 250MHzS/s 14mW Current Mode Analog to Digital Converter Using Synchronous Comparison
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-27
繳交日期
Date of Submission
2005-07-19
關鍵字
Keywords
類比數位轉換器
ADC
統計
Statistics
本論文已被瀏覽 5798 次,被下載 4704
The thesis/dissertation has been browsed 5798 times, has been downloaded 4704 times.
中文摘要
本篇論文提出一個可以操作在3.3伏特供應電壓,解析度8位元且取樣頻率為250MHz 之同步比較型電流模式類比數位轉換器(3.3V 8-bit 250MSample/sec Synchronous Comparison Current Mode Analog to Digital Converter)。此ADC設計架構是以4位元同步比較型類比數位轉換器為基礎,此4位元同步比較型ADC架構包括了RGC電流鏡、Thermometer DAC、參考電流源、電流比較器。此4位元同步比較型ADC主要是設計4組Thermometer DAC電路用以同時產生出4組4位元的參考電流Iref,並同時與輸入電流Iin比較,產生出4位元數位輸出碼。此同步比較型類比數位轉換器的優點是以非迴授方式預先由輸入電流Iin量化出之Thermometer碼控制Thermometer DAC產生出所需之參考電流Iref,用以完成高速轉換與同步輸出,同時Thermometer DAC改進Successive Approximation ADC與Variable Threshold Flash ADC中,以輸出二進碼迴授制控加權式DAC所造成之突波與保證一定單調性。在此論文中,8位元ADC是由2組4位元同步比較型ADC所組成,級與級之間是以Sub-ranging的架構所連結,由於不需要取樣和保持電路,所以此結構可達到高速的轉換速度。經由HSPICE的模擬結果得知此IADC 可達到8位元的解析度和250MHz的取樣頻率。

本論文裡所設計的同步比較型類比數位轉換器是使用台灣積體電路製造公司(TSMC) 0.35μm 2P4M 的CMOS 製程。其佈局面積為 420um × 550um ,供應電源為3.3V,功率消耗為13.24mW,微分非線性誤差約為+/- 0.5LSB,積分非線性誤差約為+/- 0.65LSB。
Abstract
A 3.3V 8-bit 250MSample/sec synchronous comparison current-mode analog to digital converter is described in this thesis. The high bits and low bits are realized by two 4-bit synchronous comparison A/Ds. The 4-bit ADC has 4 reference output, which are compared with Iin, to carry out 4-bit synchronous digital output. The reference produce circuit architecture comprises a quantification current source circuit and a thermal-to-analog (DAC) circuit. In this IADC architecture, each 4-bit pipelined stage consists of current-mirror circuits, quantification current source, and current comparator elements. This architecture can achieve a very high conversion rate due to the lack of sample/hold circuit. From HSPICE simulation results, the proposed IADC can achieve 8-bit resolution with 250MHz sampling rate. It is designed by using TSMC 0.35μm COMS 2P4M technology. It occupies an area of 420um × 550um and has power consumption of 13.24mW from a 3.3-V supply. That DNL is +/- 0.5LSB, and INL is +/- 0.65LSB are achieved.

Source : VLSI 2005 submitted.
目次 Table of Contents
第一章 導論...... . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1
1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 以往相關之研究、結果. . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.3 目前企圖改進的方式. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.4 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
第二章 常見類比數位轉換器之各種架構. . . . . . . . . . . . . . 5
2.1 類比數位轉換器的分類. . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.2 逐步逼近類比數位轉換器架構比較. . . . . . . . . . . . . . . . . . .6
2.2.1 Flash ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.2.2 Pipeline ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.3 本論文提出之ADC特性. . . . . . . . . . . . . . . . . . . . . . . . . . . .7
第三章 基本觀念. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .8
3.1 Successive Approximation ADC架構與演算法. . . . . . . . . . . .8
3.2 可變臨界式類比數位轉換器架構與演算法. . . . . . . . . . . . . .11
3.2.1 架構說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2.2 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.3 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
第四章 電流模式同步比較型ADC之電路設計. . . . . . . . . . . . . . .14
4.1 電流模式之同步比較型類比數位轉換器. . . . . . . . . . . . . . .14
4.2 電流鏡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.2.1 簡單型電流鏡(SCM) . . . . . . . . . . . . . . . . . . . . . . . . .23
4.2.2 串疊式電流鏡(CCM) . . . . . . . . . . . . . . . . . . . . . . . . .24
4.2.3 調節串疊式電流鏡(RGCM) . . . . . . . . . . . . . . . . . . . .25
4.3 數位類比轉換器(DAC) . . . . . . . . . . . . . . . . . . . . . . . . .31
4.3.1 Binary-weighted Current-Scaling DAC . . . . . . . . . .31
4.3.2 Thermometer-Code Current-Steering DAC . . . . . . . . . .32
4.4 電流比較器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
4.5 四位元同步比較型ADC整體輸出模擬結果. . . . . . . . . . . . . . .41
4.6 八位元同步比較型ADC之結構. . . . . . . . . . . . . . . . . . . .43
第五章 整體八位元ADC實驗模擬結果. . . . . . . . . . . . . . . . . . . .45
5.1 佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
第六章 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . .50
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
參考文獻 References
[1] S. Mortezapour, E.K.F. Lee, “A 1-V, 8-bit successive approximation ADC in standard CMOS process” IEEE Journal of Solid-State Circuits, vol.35 Issue 4, pp. 642 – 646, April 2000.
[2] Lin Cong; Black, W.C., “A new charge redistribution D/A and A/D converter technique pseudo C-2C ladder” The 43rd IEEE Midwest Symposium on Circuits and Systems, vol.1, pp.498-501, 2000.
[3] H. Neubauer, T. Desel, H Hauer, “A successive approximation A/D converter with
16 bit 200 kS/s in 0.6 μm CMOS using self calibration and low power techniques,”
The 8th IEEE International Conference on Electronics Circuits and Systems, vol.2 pp.859-862, 2001.
[4] K. Chen, C. Svensson, “A parallel A/D converter array structure with common reference processing unit,” IEEE Transactions on Circuits and Systems, vol.36, pp.1116-1119,1989.
[5] F. Cennamo, P. Daponte, D. Grimaldi, E. Loizzo, “An improved neural based A/D converter,” The 36th Midwest Symposium on Circuits and Systems, vol.1, pp.430-433, 1993.
[6] Cong-Kha Pham, “A novel synapses circuit and its application to a neural-based A/D converter,” IEEE International Symposium on Circuits and Systems, vol.2, pp.612-615, 2001.
[7] R. Baumgartner, Y. Leblebici, “Realization of compact low-power ripple-flash A/D converter architectures using conventional digital CMOS technology,” The 15th Annual IEEE International ASIC/SOC Conference, pp.71-74, 2002.
[8] A.M. Dighe, A.V. Bapat, “An asynchronous serial flash converter,” the 9th International Conference on Electronics Circuits and Systems, vol.1, pp.12-15, 2002.
[9] K. Uyttenhove, M. S. J. Steyaert, “A 1.8V 6-Bit 1.3-GHz Flash ADC in 0.25-μm CMOS,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.38, NO.7, JULY 2003.
[10] D. Miyazaki, M. Furuta, S. Kawahito, “A 75mW 10bit 120MSample/s parallel pipeline ADC,” the 29th European ESSCIRC 03 Proceedings Solid-State Circuits Conference, pp.719-722, 2003.
[11] 陳丁再,”A/D轉換器入門” 全華,1993
[12] Chi-Sheng Lin, Bin-Da Liu, “A new successive approximation architecture for low-power low-cost CMOS A/D converter,” IEEE Journal of Solid-State Circuits, vol.38, Issue:1, pp.54-62, 2003.
[13] Yongsang Yoo, Minkyu Song, “Design of a 1.8V 10bit 300MSPS CMOS digital-to-analog converter with a novel deglitching circuit and inverse thermometer decoder,” Asia-Pacific Conference on Circuits and Systems, vol.2, pp.311-314, 2002.
[14] M.R. Hassanzadeh, J. Talebzadeh, O. Shoaei, “A high-speed, current-steering digital-to-analog converter in 0.6-/spl mu/m CMOS,” 9th International Conference on Electronics, Circuits and Systems, vol.1, pp.9-12, 2002.
[15] Chung-Yu Wu, Yu-Yee Liow, “High-speed CMOS current-mode wave-pipelined analog-to-digital converter,” The 7th IEEE International Conference on Electronics Circuits and Systems, vol.2, pp.907-910, 2000.
[16] E. Sackinger, W. Guggenbuhl, “A high-swing, high-impedance MOS cascode circuit,” IEEE Journal of Solid-State Circuits, vol.25, Issue:1, pp.289-298, 1990.
[17] Kuo-Hsing Cheng, Chi-Che Chen, Chun-Fu Chung, “Accurate current mirror with high output impedance,” The 8th IEEE International Conference on Electronics Circuits and Systems, vol.2, pp.565-568, 2001.
[18] K. O'Sullivan, C. Gorman, M. Hennessy, V. Callaghan, “A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm/sup 2/,” IEEE Journal of Solid-State Circuits, vol.39, Issue:7, pp.1064-1072, 2004.
[19] K. Chen, C. Svensson, J.-R. Yuan, “A CMOS implementation of a video-rate successive approximation A/D converter,” IEEE International Symposium on Circuits and Systems, vol.3, pp.2577-2580, 1988.
[20] Tien-Yu Wu, Ching-Tsing Jih, Jueh-Chi Chen, Chung-Yu Wu,“A low glitch 10-bit 75-MHz CMOS video D/A converter,” IEEE Journal of Solid-State Circuits, vol.30, Issue:1, pp.68-72, 1995.
[21] K. Hadidi, V.S. Tso, G.C. Temes, “An 8-b 1.3-MHz successive-approximation A/D converter,” IEEE Journal of Solid-State Circuits, vol.25, Issue: 3, pp.880-885, 1990.
[22] 薛雅馨,快速雙極性數值內積乘法器與類比數位轉換器晶片之設計與實作,國立中山大學電機工程學系碩士論文, 2000.
[23] S. C. Heo, Y. C. Jang, S. H. Park, H. J. Park, “AN 8-BIT 200MS/s CMOS FOLDING/INTERPOLATING ADC WITH A REDRCED NUMBER OF PREAMPLIFIERS USING AN AVERAGING TECHNIQUE” IEEE International ASIC/SOC Conference, pp.25-28, 2002.
[24] S. Kim and M. Song, “AN 8-BIT 200MSPS CMOS A/D CONVERTER FOR ANALOG INTERFACE MODULE OF TFT-LCD DRIVER” The 2001 IEEE International Symposium on Circuits and Systems, vol.1, pp.6-9, 2001.
[25] Chia-Chun Tsai, Kai-Wei Hong, Yuh-Shyan Hwang, Wen-Ta Lee, Trong-Yen Lee, “New power saving design method for CMOS flash ADC,” The 2004 47th Midwest Symposium on Circuits and Systems, vol 3, pp.25-28, 2004.
[26] C. Sandner, M. Clara, A. Santner, T. Hartig, F. Kuttner, “A 6bit, 1.2GSps low-power flash-ADC in 0.13/spl mu/m digital CMOS,” Proceeding of the 30th European Solid-State Circuits Conference, pp.339-342, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code