Responsive image
博碩士論文 etd-0719105-165200 詳細資訊
Title page for etd-0719105-165200
論文名稱
Title
光纖手套資料擷取與分析系統
A Data Gloves Acquiring and Analyzing System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-23
繳交日期
Date of Submission
2005-07-19
關鍵字
Keywords
光纖手套、功能性磁振造影、監測系統
functional MRI, data glove, DGAAS, monitoring system
統計
Statistics
本論文已被瀏覽 5739 次,被下載 2427
The thesis/dissertation has been browsed 5739 times, has been downloaded 2427 times.
中文摘要
本論文提出為配合功能性磁振造影研究刺針對於中風復健的功效及機轉,提出一套運動監測系統,針對在fMRI環境內的手部運動加以觀察記錄。由於臨床部分假設針灸刺激對於腦部運動系統的恢復有所助益,而神經生理機轉可藉由功能性磁振造影圖譜術加以探索。若可提供病人之運動狀態,可能可以解釋臨床上針灸對於中風的療效。因此擬建立光纖手套資料擷取與分析系統,針對指尖接觸運動模式進行監測與分析,迅速提供有用之手部運動資訊與功能腦圖譜相比對。
本監測系統需可在磁場環境下使用,且因病人肌力量表微弱,故選擇感應靈敏的光纖手套作為擷取指尖接觸運動之設備,並針對擷取之訊號建立分析程式,在運算過後分「節拍準確度」、「彎曲角度」、「節拍次序正確度」三大部分提供充足之資訊,希望能夠對手部運動與腦部功能區反應的相關性有更深入的瞭解。
本監測系統再整合「節拍準確度」、「彎曲角度」、「節拍次序正確度」之手部資訊與功能性磁振造影圖譜,將可延伸成為一復健診斷機制。透過資料分析整合即時觀察復健狀態,以其達到建立迅速、正確、完整的復健規劃。
Abstract
none
目次 Table of Contents
目錄
目錄 I
圖索引 IV
表索引 VII
中文摘要 VIII
英文摘要 IX
第一章 緒論
1-1前言 1
1-2研究動機與目的 2
1-3文獻回顧 3
1-4研究方向 7
1-5論文架構 8
第二章 簡介
2-1 f MRI概述 9
2-2腦部活化機制 11
2-3手部認知 13
2-3-1手部姿勢簡介 13
2-3-2手部運動模式規劃 16

第三章 光纖手套資料擷取與分析系統
3-1系統簡介 20
3-1-1環境限制 20
3-1-2訊號干擾 21
3-1-3實用性考量 21
3-2系統架構與流程 22
3-2-1光纖手套構造 23
3-2-2光纖手套元件與應用流程 25
3-2-3彎曲角度分析 30
3-2-4節拍準確度分析 35
3-2-5節拍次序正確度分析 42
3-2-6雙手協調性分析 43
3-3問題分析與探討 46
第四章 實驗規劃分析與結論
4-1 DGAAS量測實驗規劃 51
4-2實驗結果 56
4-3實驗結論 76
第五章 結論
5-1結論 77
5-2未來展望 78
參考文獻 79
參考文獻 References
[1] Ogawa, S., T.M. Lee, A.S. Nayak, and P. Glynn, “Oxygenation -sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magn. Reson. Med., vol. 14, pp. 68-78, 1990.

[2] Ogawa, S., and T.M. Lee, “Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation,” Magn. Reson. Med., Vol. 16, pp. 9-18, 1990.

[3] Ogawa, S., T.M. Lee, A.R. Kay, and D.W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Nat. Acad. Sci. USA, Vol. 87, pp. 9868-9872, 1990.

[4] Kwong, K.K., J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskoff, R.M. B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, H.M. Cheng, T.J. Brady, and B.R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Nat. Acad. Sci. USA, Vol. 89, No. 12, pp. 5675-5679, 1992.

[5] Bandettini, P.A., E.C. Wong, R.S. Tikofsky, R.S. Hinks, and J.S. Hyde, “Time course EPI of human brain function during task activation,” Magn. Reson. Med., Vol. 25, No. 2, pp. 390-397, 1992.

[6] Ogawa, S., D.W. Tank, R. Menon, J.M. Ellermann, S.G. Kim, H. Merkle, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic res-onance imaging,” Proc. Nat. Acad. Sci. USA, Vol. 89, No. 13, pp. 5951-5955, 1992.

[7] Ugurbil, K., A. Shmuel, and J. Pfeuffer, “Magnetic Resonance Imaging of Brain Function and Neurochemistry,” Proceedings IEEE, Vol. 89, No. 7, pp. 1093-1105, July 2001.

[8] Macey, K.E., P.M. Macey, M.A. Woo, L.A. Henderson, R.C. Frysinger, J.R. Alger, and R.M. Harper, “Neural signal changes associated with cardiac and respiratory measures vs boxcar analysis in functional magnetic resonance imaging (fMRI),” Proceedings of The 23rd Annual EMBS International Conference, pp. 2315-2318, October 25-28, Istanbul, Turkey 2001.

[9] Niazy, R.K., Q. Maolin, D. Zhensheng, J. Enderle, and L. Song, “Normal Aging and Brain Functional Connectivity of Primary Motor Cortex: A Functional MRI(fMRI) Study,” Bioengineering Conference, Proceedings of the IEEE 28th Annual Northeast, pp. 153-154, 2002.

[10] Singh, M., D. Khosla, D. Rice, T. Kim, and H. Kim, “Combining functional MRI and EEG source -imaging,” IEEE Nuclear Science Symposium and Medical Imaging Conference, Vol. 4, pp. 1547-1550, 30 Oct-5 Nov 1994.

[11] Yang, J.R., M.J. Chiu, G.M. Huang, and J.H. Chen, “Evaluation of functional MR imaging (fMRI)analysis methods,” Proceedings of IEEE 17th Annual Conference on Engineering in Medicine and Biology Society, Vol. 1, pp. 485-486, 20-25, Sep 1995.

[12] Singh, M., L. Al-Dayeh, and P. Patel, “2D and 3D nonrigid body registration in fMRI,” IEEE Nuclear Science Symposium, Vol. 2, pp. 1474-1478, 2-9, Nov 1996.

[13] Solo, V., E. Brown, and R. Weisskoff, “A signal processing approach to functional MRI for brain mapping,” Proceedings of the International Conference on Image Processing, pp. 121-123, 26-29 Oct 1997.

[14] Chen, M., T. Kanade, H.A. Rowley, and D. Pomerleau, “Quantitative Study of Brain Anatomy,” Proceedings of the Workshop on Biomedical Image Analysis, pp. 84-92, 26-27 Jun 1998.

[15] E.M., Haacke, “Functional brain mapping,” ICIP 98. Proceedings of the International Conference on Image Processing, Vol., 2, pp. 1-4, 4-7 Oct 1998.

[16] Fu, Z., Y. Hui, and Z.P. Liang, “Joint spatiotemporal statistical analysis of functional MRI data,” Proceedings of the International Conference on Image Processing ICIP 98, Volume: 1, pp. 709-713, 4-7 Oct 1998.

[17] Desombes, X., F. Kruggel, and D. Yves von Cramon “Spatio-temporal fMRI analysis using Markov random fields,” IEEE Transactions on Medical Imaging, Vol. 17, No. 6, pp. 1028-1039, Dec 1998.

[18] Babiloni, F., F. Carducci, C. Del Gratta, C. Babiloni, G.M. Roberti, G.L. Romani, C. Caltagirone, P.M. Rossini, and A. Urbano, “Combined High Resolution EEG and Functional MRI Data for Modeling of Cortical Sources of Human Movement-Related Potentials,” Proceedings of The 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No. 4, pp. 2135-2138, 1998.

[19] Nakasato, N., T. Inoue, A. Takahashi, A. Kanno, K. Hatanaka, H. Shimizu, T. Kumabe, and T. Yoshimoto, “Combined of magnetoencephalography (MEG)and functional magnetic resonance imaging (fMRI)for neurosurgical mapping of the sensory and motor cortices,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No. 4, pp. 2209-2212, 1998.

[20] Dodel, S., J.M. Herrmann, and T. Geisel, “Components of brain activity –data analysis for fMRI,” Artificial Neural Networks Conference, pp. 1023-1028, 7-10 Sep, 1999.

[21] Lukic, A.S., M.N. Wernick, and S.C. Strother, “An evaluation of methods for detecting brain activations from PET or fMRI images,” IEEE Nuclear Science Symposium, Vol. 2, pp. 1119-1123, 1999.

[22] Weiller, C., F. Chollet, K.J. Friston, R.J.S. Wise, and R.S.J. Frackowiak “Functional reorganization of the brain in recovery from striatocapsular infarction in man,” Ann Neural Vol. 31, PP. 463-472, 1992.

[23] Weiller C, S.C. Ramsay, and R.J.S. Wise, “Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction,” Ann Neural Vol. 29, pp. 181-189, 1993.

[24] Cramer, S.C., G. Nelles, R.R. Benson, J.D. Kaplan, R.A. Parker, K.K. Kwong, D.N. Kennedy, S.P. Finklestein, and B.R. Rosen, “A functional MRI study of subjects recovered from hemisphere stroke,” Stroke Vol. 28, pp. 2518-2527, 1997.

[25] Keiji, I., M. Yumoto, K. Yoshikawa, H. Kamei, and S. Ueno, “Measurement Somatosensory Evoked Response Using Functional MR Images and MEG,” IEEE Transactions On Magnetics, Vol. 33, No. 5, pp. 4260-4262, September 1997.

[26] Cao, Y., L. D'Olhaberriague E.M. Vikingstad, S.R. Levine, and K.M. Welch, “Pilot study of functional MRI to asses cerebral activation of motor function after poststroke hemiparesis,” stroke Vol. 29, pp. 112-122, 1998.

[27] Wu, M.T., J.M. Sheen, K.H. Chuang, P. Yang, S.L. Chin, C.Y. Tsai, C.J. Chen, J.R. Liao, P.H. Lai, K.A. Chu, H.B. Pan, and C.F. Yang, “Neuronal Specificity of Acupuncture Response: A fMRI Study with Electroacupuncture,” NeuroImage Vol. 16, pp. 1028-1037, 2002.

[28] Malaviya, C.N., S. Husain, “Evaluation of methods of claw finger correction using the finger dynamography technique,” Journal of hand Surgery(British and European Volume), 18B: 635-638, 1993.

[29] Alsayegh, O., N. Vujovic, and D. Brzakovic, “Hand Gesticulation Interpretation via Smart Sensing,” Signals, Proceedings of the Twenty-Eighth Asilomar Conference on Systems and Computers, Vol. 2, pp. 1272-1276, 31 Oct-2 Nov 1994.

[30] Min, B.W., H.S. Yoon, J. Soh, Y.M. Yang, and T. Ejima, “Hand Gesture Recognition Using Hidden Markov Models,” IEEE International Conference on Computational Cybernetics and Simulation, Vol. 5, pp. 4232-4235, 12-15 Oct 1997.

[31] Plewes D.B., C.A. Piron, C. Luginbuhl, R. Jong, P. Causer, and R. Shumak, “A Hybrid Breast Biopsy System Combing Ultrasound and MRI,” pp. 1355-1359, IEEE Ultrasound Symposium 2001.

[32] Hunt, J.M., The Rehabilitation of the Hand, 3rded, St. Louis, Mosby, 1990.

[33] Smith, L.K., Brunnstrom’s Clinical Kinesiology, Hanil Medical Book Center, pp.216-218, 1996.

[34] Summers, J., “Practice and Training in Bimanual Coordination Tasks: Strategies and Constraints,” Brain and Cognition Vol.48, pp. 166-178, 2002.


[35] Sadato, N., Yonekura, Y., Waki, A., Yamada, H., Ishii, Y., “Role of the Supplementary Motor Area and the Right Premotor Cortex in the Coordination of Bimanual Finger Movements,” J. Neuroscience Vol.17, pp. 9667-9674, 1997.

[36] Jancke, L., Peters, M., Schlaug, G., Posse, S., Steinmetz, H., Muller-Gartner, H.-W., “Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand,” Cogn. Brain Res. Vol.6, pp. 279-284, 1998.

[37] Jancke, L., Peters, M., Himmelbach, M., Nosselt, T., Shah, J., Steinmetz, H. “fMRI study of bimanual coordination,” Neuropsychologia Vol.38, pp. 164-174, 2000.

[38] Gerloff, C., Andres, F. G., “Bimanual coordination and interhemispheric interaction,” Acta Psychologica Vol.110, pp.161-186, 2002.

[39] De Weerd, P., Reinke, K., Ryan, L., McIsaac, T., Perschler, P., “Cortical mechanisms for acquisition and performance of bimanual motor sequences,” NeuroImage Vol.19, pp. 1405-1416, 2003.

[40] Debaere, F., Wenderath, N., Sunaert, S., Hecke, P.V., Swinnen, S. P., “Internal vs External generation of movements: differential neural pathway involved in bimanual coordination performed in the presence or absence of augmented visual feedback,” NeuroImage Vol.19, pp. 764-776, 2003.

[41] 莊凱翔,核磁共振影像原理及應用,MRI教學講義,2002。 http://home.kimo.com.tw/khchuang.tw/mri2002.html

[42] 莊凱翔 以模糊神經網路辨識功能性核磁共振影像之信號波形 國立臺灣大學電機工程研究所碩士論文 1996。

[43] 邱銘章 功能性磁振影像分析及神經科學之應用 國立臺灣大學電機工程研究所博士論文 2000。

[44] 張智穎 以動脈血液標記磁振影像研究腦血流灌注 國立陽明大學放射醫學科學研究所碩士論文 2002。


[45] 邱皓雲 不同視覺刺激強度對功能性核磁共振影像與腦電訊號的影響 國立臺灣大學電機工程研究所碩士論文 1998。

[46] 陳巧芳 疼痛知覺之中樞神經機轉-功能性磁振造影實驗模式的建立 國立陽明大學神經科學研究所碩士論文 2000。

[47] 李佳穎 論漢字唸名的形音轉換機制-認知實驗與功能性腦造影之整合研究 國立中正大學心理學研究所碩士論文 2001。

[48] 陳致寧 以功能性磁振造影探索人類大腦聽覺系統-於1.5T臨床磁共振儀之初步研究 國立臺灣大學電機工程研究所博士論文 2002。

[49] 謝秀敏 應用功能性磁振造影研究周邊神經損傷病人之中樞運動系統可塑性 國立陽明大學神經科學研究所碩士論文 2001。

[50] 林立峰 利用功能性磁振造影評估中風病人經過動作恢復後的腦部活化機制 國立陽明醫學工程所碩士論文 2002。

[51] 劉勝賢 最大手指運動範圍在評估手指運動功能之應用 國立成功大學醫學工程研究所碩士論文 1994。

[52] 溫文仲 手功能評估 國立成功大學醫學工程研究所碩士論文 1995。

[53] 李明義、鄭智仁 長庚一號(CGU-1)運動控制診斷評估用手套之開發,長庚大學機械工程研究所,醫療自動化與復健工程研發室,1999。

[54] 史傑州 應用感應手套模擬手部復健評估 國立成功大學工業設計系碩士論文 1999。

[55] 黃群皓 功能性磁振造影手部運動功能評量監測系統 國立中山大學機械與機電工程研究所碩士論文 2003。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code