Responsive image
博碩士論文 etd-0719106-115358 詳細資訊
Title page for etd-0719106-115358
論文名稱
Title
以液相沈積法備製氧化鋅奈米結構
Zinc Oxide Nanostructures Prepared by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
50
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-13
繳交日期
Date of Submission
2006-07-19
關鍵字
Keywords
氧化鋅、液相沉積法、奈米結構
ZnO, Nanostructure, LPD
統計
Statistics
本論文已被瀏覽 5801 次,被下載 1763
The thesis/dissertation has been browsed 5801 times, has been downloaded 1763 times.
中文摘要
探討硝酸鋅和六亞甲基四胺水溶液在砷化鎵基板上成長柱狀的氧化鋅和葉狀的氫氧化鋅,而葉狀生成物主要由氫氧化鋅所組成,另一方面硝酸鋅和六亞甲基四胺鍵結而成的有機核主要幫助柱狀的氧化鋅形成,隨著加入不同濃度的硝酸水溶液,可使的在較低溫下主要的生成物為柱狀氧化鋅。
Abstract
Both zinc oxide rods and zinc hydroxide slices grown on gallium arsenide in the aqueous solution of zinc nitrate and hexamethylenetetramine were studied. Zinc hydroxide is responsible for the growth of slices. Hexamethylenetetramine-zinc nitrate organometallic complex acts as the nucleus for zinc oxide rods formation. Incorporating with appropriate concentration of nitric acid in the aqueous solution, zinc oxide rods can dominate the growth at a lower temperature.
目次 Table of Contents
Chapter 1 1
Introduction 1
1-1 Background of ZnO 2
1.2. Growth Mechanism in LPD-ZnO 2
1-3 Motivation 3
1-3 GaAs substrate 4
1-4 Advantage of LPD 4
Reference 7
CHAPTER 2 10
Experiments 10
2-1 Zinc oxide prepared by LPD 10
2-1-1Liquid Phase Deposition System 10
2-1-2Using Liquid Phase Deposition 10
2-1-3 Growth Mechanism With the incorporation of nitric acid 11
2-1-4 N2O decomposed 11
2-2 Deposition procedures 12
2-2-1 GaAs wafer cleaning procedures 12
2-3 Photocatalytic procedures 13
2-4 Characteristics 13
2-4-1 Physical properties 13
2-4-2 Chemical properties 14
2-4-3Optical properties 15
Reference 20
CHAPTER 3 21
Result and Discussion 21
3.1 Physical and Chemical Analyses of ZnO Rods and Zn(OH)2 Slices 21
3.2 Freestanding ZnO Rods Array 23
3.3 Photocatalysis of ZnO Rods and ZnO Slices Converted from Zinc Hydroxide Slices by Thermal Annealing 24
Reference 41
CHAPTER 4 43
Conclusions 43
參考文獻 References
[1] S. M. Sze, Semiconductor devices physics and technology 2nd edition.
[2] Y. Zhang, C. S. Whelan, R. Leoni, P. F. Marsh, W. E. Hoke, J. B. Hunt, C. M. Laighton, and T. E. Kazior, “40-Gbit/s OEIC on GaAs substrate through metamorphic buffer technology,” IEEE electron device letters, vol. 24, no. 9, pp. 529-531, 2003.
[3] E. Cohen, Y. Betser, B. Sheinman, S. Cohen, V. Sidorov, A. Gavrilov, and D.Ritter, 2005 international conference on indium phosphide and related materials.
[4] H. M. Kim, T. W. Kang, and K. S. Chung, “Nanoscale ultraviolet-light emitting diodes using wide-bandgap gallium nitride nanorods,” Adv. Mater., Vol. 15, no. 7-8, pp. 567-569, 2003.
[5] R. F. Service, “Will UV lasers beat the blues?,” Science, vol. 276, pp. 895-895, 1997.
[6] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni, and T. O. Mason, “Chemical and structural factors governing transparent
conductivity in oxides,” J. Electroceram., vol. 13, pp. 167-175, 2004.
[7] S. C. Minne, S. R. Manalis, and C. F. Quate, “Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators,” Appl. Phys. Lett., vol. 67, pp. 3918-3920, 1995.
[8] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., vol. 80, pp. 4232-4234, 2002.
[9] Y. B. Li, T. Bando, T. Sato, and K. Kurashima, “ZnO nanobelts grown on Si substrate”Appl. Phys. Lett., vol 81, pp 144-146, 2002.
[10] B. D. Tao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., vol. 81, pp. 757-759, 2002.
[11] X. Y. Kong and Z. L. Wang, ” Spontaneous polarization-induced
nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts,
” Nano Lett., vol. 3, pp. 1625-1631, 2003.
[12] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., vol. 15, pp. 464-466, 2003.
[13] I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B, vol. 69, pp. 245401-4, 2004.
[14] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, ” Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process,” J. Phys. Chem. B, vol. 108, pp. 3955-3958, 2004.
[15] X. Gao, X. Li, and W. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B., vol. 109, pp. 1155-1161, 2005.
[16] D. Martrou, J. Eymery, and N. Magnea, “Equilibrium shape of steps and islands on polar II-VI semiconductors surfaces,” Phys. Rev. Lett., vol. 83, pp. 2366-2369, 1999.
[17] M. K. Ryu, S. H. Lee, M. S. Jang, G. N. Panin, and T. M. Kang, ” Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron. sputtering technique,” J. Appl. Phys., vol. 92, pp. 154-158, 2002.
[18] S .J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, and T. Steiner. ”Recent progress in processing and properties of ZnO,” Propress in materials science, vol. 50, pp. 294-340, 2005.
[19] Sophie Peulon and Daniel Lincot, “Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions,” J. Electrochem. Soc., vol. 145, pp. 864-874, 1998.
[20] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. McKinley, P. K. Chu, “Evidence that N2O is a stronger oxidizing agent than O2 for the post-deposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol 36, pp. 661-666, 1997.
[21] S. Yamazaki, S. Iwai, J. Yano and H. Taniguchi, “Kinetic studies of reductive deposition of copper(II) ions photoassisted by titanium dioxide,” J. Phys. Chem. A, vol. 105, pp. 11285-11290, 2001.
[22] S. Yamazaki, N. Takemura, Y. Yoshinaga and A. Yoshida, “Transmittance change of the TiO 2 thin film by photoreductive deposition of Cu (II),” Journal of photochemistry and photobiology A: Chemistry, vol. 161, pp. 57-60, 2003.
[23] Y. C. Kong et al. “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett., vol. 78, pp. 407-409, 2000.
[24] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., vol 13, pp. 113-116, 2001.
[25] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897-1899, 2001.
[26] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett., vol.82, pp. 964-966, 2003.
[27] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique ,“ Chem. Phys. Lett., Vol. 363, pp. 123-128, 2002.
[28] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “ Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,“ Appl. Phys. Lett., vol. 80, pp. 4232-4234, 2002.
[29] J. J. Wu, S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,“ Adv. Mater., vol. 14, pp. 215-218, 2002.
[30] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, “Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films,” Adv. Funct. Mater., vol. 13, pp. 811-824, 2003.
[31] Y. K. Tseng, C. T. Chia, C. Y. Tsay, L. J. Lin, H. M. Cheng, C. Y. Kwo, I. C. Chen, “Growth of epitaxial needlelike ZnO nanowires on GaN films,” J. Electrochem. Soc., vol. 152, pp. 95-98, 2005.
[32] B. Mokili, Y. Charreire, R. Cortes, D. Lincot, “Extended X-ray absorption fine structure studies of zinc hydroxo-sulphide thin films chemically deposited from aqueous solution,” Thin Solid Films, vol. 288, pp. 21-28, 1996.
[33] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition,“ Mater. Sci. Eng. B, vol. 71, pp. 301-305, 2000.
[34] J. Chen, Z. Feng, P. Ying, M. Li, B. Han, C. Li, ”The visible luminescent characteristics of ZnO supported on SiO 2 powder,” Phys. Chem. Chem. Phys., vol. 6, pp. 4473-4479, 2004.
[35] Y. Yang, H. Yan, Z. Fu, B. Yang, J. Zuo, ”Correlation between 577 cm–1 Raman scattering and green emission in ZnO ordered nanostructures,” Appl. Phys. Lett., vol. 88, pp. 191909-3, 2006.
[36] Y. K. Tseng, C. H. Huang, H. M. Cheng, I.. N. Lin, K. S. Liu, ” Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films,” Adv. Funct. Mater., vol. 13, pp. 811-814, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code