Responsive image
博碩士論文 etd-0719106-205009 詳細資訊
Title page for etd-0719106-205009
論文名稱
Title
類鑽碳薄膜成長及MIS元件特性分析
DLC Film Growth and MIS Devices Characterization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-14
繳交日期
Date of Submission
2006-07-19
關鍵字
Keywords
金屬-絕緣體-半導體、液相電沈積、類鑽碳
MIS, electro-deposition, DLC
統計
Statistics
本論文已被瀏覽 5636 次,被下載 0
The thesis/dissertation has been browsed 5636 times, has been downloaded 0 times.
中文摘要
類鑽碳(Diamond-Like Carbon, DLC)薄膜具有高硬度、高的熱傳導性、低膨脹係數、低摩擦係數、高化學安定性、高電阻等優點。這些特性使得DLC薄膜適合當作金屬-絕緣體-半導體之中的絕緣層材料。本論文主要是利用液相電沈積方法在矽基板上沉積類鑽碳 (Diamond-Like Carbon, DLC)薄膜,使用的電解液為醋酸水溶液,並利用拉曼光譜(Raman Spectroscopy)來分析DLC薄膜的結構。我們利用熱蒸鍍的方式在DLC/矽基板上沉積一層鋁膜,使其成為金屬-絕緣體-半導體(Metal Insulator Semiconductor, MIS)的結構。並使用半導體精準參數量測系統來分析MIS的電性機制。
在電沉積的過程中,我們改變各種變因來沉積DLC薄膜,其主要包括電解液濃度、電極與矽基板的間距、沉積溫度與操作電壓。並詳細的敘述變因對DLC的特性與薄膜生長機制所造成的影響。最後,我們獲得一個電沉積的模型去描述DLC薄膜的生長機制。
Abstract
Diamond-Like carbon (DLC) films has a lot of advantages, such as high hardness, high thermal conductivity, low expansion coefficient, low friction coefficient, high chemical stability, high impedance. These properties make the DLC films suitable for becoming an insulator in metal insulator semiconductor structure. In this study, DLC films were deposited by electro-deposition technique onto silicon (Si) substrates, in which a mixture of acetic acid and water is used as the electrolyte. The structure of the DLC films is characterized by Raman Spectroscopy. The thermal evaporation technique was used to deposit an aluminum films on the DLC/Si-substrates, to make it as the structure of metal-insulator semiconductor (MIS), and the electrical properties of the MIS were measured by semiconductor parameter analyzer.
DLC films were deposited by varying the parameters of electro-deposition process included mainly as the concentration of solution, the spacing between electrode and silicon substrate, deposition temperature, and the applied voltages. The properties and film growth of DLC attributed to the effect of parameters were described in detail. Finally, an electro-deposition model is obtained to describe the growth mechanism of electro-deposition of DLC film.
目次 Table of Contents
頁次
中文審定書
英文審定書
誌謝 ………………………………………………. Ⅰ
中文摘要 ………………………………………………. Ⅱ
英文摘要 ………………………………………………. Ⅲ
目錄 ………………………………………………. Ⅳ
圖目錄 ………………………………………………. Ⅶ

第一章 緒論…………………………………………. 1
1-1 前言…………………………………………. 1
1-2 研究動機……………………………………. 2
第二章 理論基礎……………………………………. 3
2-1 類鑽碳的文獻回顧…………………………. 3
2-1-1 類鑽碳的由來…………………..................... 3
2-1-2 液相電沉積的起源………………................. 4
2-2 類鑚碳材料…………………………………. 5
2-2-1 類鑚碳的結構與組成……………………..... 5
2-2-2 類鑚碳的特性……………………………..... 6
2-2-3 類鑚碳的分類…………………………...….. 7
2-3 MIS結構……………………………………. 10
2-3-1 堆疊結構…………………………................. 10
2-3-2 MIS電容理論基礎………………………….. 11
2-3-3 MIS 結構中氧化層缺陷之型態…………… 13
2-4 介電理論……………………………………. 17
2-4-1 介電特性……………………......................... 17
2-4-2 介電崩潰……………………………………. 17
2-4-3 極化機構…………………............................. 19
2-5 元件可靠度分析理論………………………. 21
第三章 實驗方法與步驟……………………………. 23
3-1 實驗流程……………………………………. 23
3-2 實驗材料與儀器設備………………………. 24
3-2-1 實驗材料…………………………………… 24
3-2-2 儀器設備……………………………………. 24
3-3 實驗操作步驟………………………………. 25
3-3-1 基板清洗步驟………………………………. 25
3-3-2 液相電沉積之操作步驟……………………. 26
3-3-3 熱蒸鍍之操作步驟…………………………. 26
3-4 量測儀器……………………………………. 27
3-5 量測儀器原理………………………………. 28
第四章 結果與討論…………………………………. 30
4-1 DLC薄膜的特性分析……………………… 30
4-1-1 電壓之影響 30
4-1-2 電解液濃度之影響 30
4-1-3 電極間距之影響 31
4-2 拉曼光譜分析………………………………. 32
4-3 DLC成長機制分析………………………… 35
4-4 MIS的I-V特性分析……………………….. 36
第五章 結論…………………………………………. 37
參考文獻 …………………………………………………………... 58
參考文獻 References
[1] S. Aisenberg, R. Chabot, “Ion-Beam Deposition of Diamondlike Carbon”, Journal of Applied Physics, 42 (1971) pp.2953-2961.
[2] V. Kulikovsky, P. Bohac, F. Franc, A. Deineka, V. Vorlicek, L. Jastrabik, “Hardness, intrinsic stress, and structure of the a-C and a-C:H films prepared by magnetron sputtering”, Diamond and Related Materials, 10 ( 2001) pp.1076-1081.
[3] D.Y. Wang, C.L. Chang, “Influences of optical emission settings on wear performance of metal-doped diamond-like carbon films deposited by unbalanced magnetron sputtering”, Thin Solid Films, 392 (2000) pp.11-15.
[4] O. R. Monteiroa, I. G. Browna, “Tungsten-containing amorphous carbon Films deposited by pulsed vacuum arc”, Thin Solid Films, 342 (1999) pp.100-107.
[5] A. Kumar, H. L. Chan, J. S. Kapat, “Deposition an characterization of titanium carbide coatings using laser ablation method”, Applied Surface Science, 127-129 (1998) pp.549-552.
[6] Q. Juna, L. Jianbin, W. Shizhu, J. Wang, W. Li, “Mechanical and tribological properties of non-hydrogenated DLC films synthesized by IBAD”, Surface and Coatings Technology, 128-129 (2000) pp.324-328.
[7] P.P. Psyllaki, M. Jeandin, D.I. Pantelis, M. Allouard, “Pin-on-disk test of PE-CVD diamond-like carbon coatings on tool steel substrates”, Surface and Coatings Technology, 130 (2000) pp.297-303.
[8] M.K. Fung, K.H. Lai, C.Y. Chan, I. Bello, C.S. Lee, S.T. Lee, D.S. Mao, X. Wang, “Mechanical properties and corrosion studies of amorphous carbon on magnetic disks prepared by ECR plasma technique”, Thin Solid Films, 368 (2000) pp.208-210.
[9] Y. Namba, “Attempt to grow diamond phase carbon films from an organic solution”, Journal of Vacuum Science & Technology A, 10 (1992) pp.3368-3370.
[10] T. Suzuki, Y. Manita, T. Yamazaki, S. Wada, and T. Noma, “Deposition of carbon films by electrolysis of a water-ethylene glycol solution”, Journal of Materials Science, 30 (1995) pp.2067-2069.
[11] H Wang, MR Shen, ZY Ning, C Ye, CB Cao, HY Dang, “Deposition of diamond-like carbon films by electrolysis of methanol solution”, Applied Physics Letters, 69 (1996) pp.1074-1076.
[12] MC Tosin, AC Peterlevitz, GI Surdutovich, V Baranauskas, “Deposition of diamond and diamond-like carbon nuclei by electrolysis of alcohol solutions”, Applied Surface Science, 144-145 (1999) pp.260-264.
[13] D Guo, K Cai, L Li, Y Huang, Z Gui, H Zhu, “Electrodeposition of diamond-like amorphous carbon films on Si from N,N-dimethylformamide”, Chemical Physics Letters, 329 (2000) pp.346-350.
[14] H Wang, M Yoshimura “Electrodeposition of diamond-like carbon films in organic solvents using a thin wire anode”, Chemical Physics Letters, 348 (2001) pp.7-10.
[15] JT Jiu, LP Li, CB Cao, HS Zhu, “Deposition of diamond-like carbon films by using liquid phase electrodeposition technique and its electron emission properties”, Journal of Materials Science, 36 (2001) pp.5801-5804.
[16] RK Roy, B Deb, B Bhattacharjee, AK Pal, “Synthesis of diamond-like carbon film by novel electrodeposition route”, Thin Solid Films, 422 (2002) pp.92-97.
[17] D Guo, K Cai, LT Li, Y Huang, ZL Gui, “Evaluation of carbon films electrodeposited on different substrates from different organic solvents”, Applied Physics A, 74 (2002) pp.69-72.
[18] HS Zhu, JT Jiu, Q Fu, H Wang, CB Cao, “Aroused problems in the deposition of diamond-like carbon films by using the liquid phase electrodeposition technique”, Journal of Materials Science, 38 (2003) pp.141-145.
[19] S. Gupta, R.K. Roy, B. Deb, S. Kundu, A.K. Pal, “Low voltage electrodeposition of diamond-like carbon films”, Materials Letters, 57 (2003) pp.3479-3485.
[20] S Gupta, MP Chowdhury, AK Pal, S Gupta, MP Chowdhury, AK Pal, “Synthesis of DLC films by electrodeposition technique using formic acid as electrolyte”, Diamond & Related Materials, 13 (2004) pp.1680-1689.
[21] S Gupta, R.K. Roy, B. Deb, S. Kundu, K. Pal A, “Low voltage electrodeposition of diamond like carbon (DLC)”, Applied Surface Science, 252 (2005) pp.296-302.
[22] 林益楠,“低電位電沈積類鑽碳薄膜之研究”,中山大學,碩士論
[22] 文 (2005)。
[23] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to
Ceramics, Chapter 2, John Wiley & Sons, Canada, 1991
[24] 余樹楨,晶體之結構與性質,第十二章,渤海堂文化公司,台
[24] 北台灣,1993。
[25] J. Robertson, “The deposition mechanism of diamond-like a-C and a-C:H”, Diamond and Related Materials, 3 (1994) pp.361-368.
[26] J. Robertson, “Diamond-like amorphous carbon”, Materials Science and Engineering, R 37 (2002) pp.129-281.
[27] 宋健民,“碳的大千世界”,鑽石合成,全華書局,2000。
[28] J. Robertson, “structural models of a-C and a-C:H”, Diamond and Related Materials, 4 (1995) pp.297-301.
[29] B.B Pate, M.H. Hecht, C. Binns, “Photoemission and photon-stimulated ion desorption studies of diamond (111): hydrogen”, Journal of Vacuum Science Technology, 21 (1981) pp.364-367.
[30] A. Erdemir, I.B. Nilufer, O.L. Eryilmaz, M. Beschliesser, G.R. Fenske, “Friction and wear performance of diamond-like carbon films grown in various source gas plasmas”, Surface and Coatings Technology, 120-121(1999) pp.589-593.
[31] J. C. Angus and C. C. Hayman, “Low-Pressure, Metastable Growth of Diamond and ``Diamondlike' Phases”, Science, 241 (1998) pp.913-921.
[32] J. Roberson, “Properties of diamond-like carbon”, Surface and Technology, 50 (1992) pp.185-203.
[33] 錢國基,產業經濟第201卷,1998。
[34] C. D. Martino, F. Demichelis and A. Tagliaferro, “Determination of the sp3/sp2 Ratio in a-C:H Films by Infrared Spectrometry Analysis”, Diamond and Related Materials, 4 (1995) pp.1210-1215.
[35] Nicollian, E. H., and J. R. Brews. MOS Physics and Technology. New York:Wiley, 1982.
[36] Pierret, R. F. Semiconductor Device Fundamentals. Reading, MA:AddisonWesley, 1996.
[37] Shur, M. Physics of Semiconductor Devices. Englewood Cliffs, NJ:Prentice Hall, 1990.
[38] B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon”, IEEE Transactions Electron Dev., 27 (1980) pp.606-608.
[39] D. K. Schroder, Semiconductor material and device characterization 2nd edition, Wiley, New York (1998).
[40] A. Goetzberger, E. Klausmann and M. J. Schulz, “Interface states on semiconductor/insulator interface”, Solid State Science, 6 (1976) pp.1-43.
[41] G. Declerck:Characterization of surface states at the Si-SiO2 interface in Nondestructive Evaluation of of Semiconductor Materials and Devices (J. N. Zemel, ed) Plenum Press, New York, (1979) pp.105-148.
[42] W. E. Dahlke, and S. M. Sze, “Tunneling in metal-oxide-silicon structures”, Solid-state Electronics, 10 (1967) pp.865-873.
[43] G. Burns, “Solid state physics”, Prentice-Hall, 1957.
[44] Acovic A, LaRosa G, Sun YC, “A review of hot-carrier degradation mechanisms in MOSFETs”, Microelectronics And Reliability, 36 (1996) pp.845-869.
[45] D. J. DiMaria and J. W. Stasiak, “Trap creation in silicon dioxide produced by hot electrons”, Journal of Applied Physics, 65 (1989) pp.2342-2356.
[46] M. M. Heyns, D. Krishna Rao, and R. F. De Keersmaecker, “Oxide field dependence of Si-SiO2 interface state generation and charge trapping during electron injection”, Applied Surface Science, 39 (1989) pp.327.
[47] E. Harari, “Dielectric breakdown in electrically stressed thin films of thermal SiO2”, Journal of Applied Physics, 49 (1978) pp.2478-2489.
[48] J. Sune, I. Placencia, N. Barniol, E. Farrs, and X. Aymerich, “Degradation and breakdown of gate oxide in VLSI device”, physica status solidi, 111 (1989) pp.675.
[49] C. J. Sofield and A. M. Stoneham, “Oxidation of silicon:the VLSI gate dielectic”, Semiconductor science and technology, 10 (1995) pp.215-244.
[50] J. Maserijian and N. Zamani, “Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling”, Journal of Applied Physics, 53 (1982) pp.559-567.
[51] Y. Nissan-Cohen, J. Shappir, and D. Frohman-Bentchkowsky, “Measurements of Fowler-Nordheim tunneling currents in MOS structures under Charge trapping conditions”, Solid-State Electron., 28 (1985) pp.717.
[52] C. V. Raman, “A new radiation”, Indian Journal of Physics, 2 (1928) pp.387-398.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.61.223
論文開放下載的時間是 校外不公開

Your IP address is 18.188.61.223
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code