Responsive image
博碩士論文 etd-0719106-210520 詳細資訊
Title page for etd-0719106-210520
論文名稱
Title
銻化鎵元件特性之研究
Study on the characteristics GaSb device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-14
繳交日期
Date of Submission
2006-07-19
關鍵字
Keywords
障位高度、銻化鎵、分子束磊晶、蕭特基接面
Schottky contact, barrier height, MBE, GaSb
統計
Statistics
本論文已被瀏覽 5724 次,被下載 0
The thesis/dissertation has been browsed 5724 times, has been downloaded 0 times.
中文摘要
本研究是在n+-GaAs基板和半絕緣的砷化鎵基板上,以超高真空分子束磊晶系統來成長銻化鎵薄膜,接著再鍍上不同的金屬,探討不同銻/鎵比值(Sb4/Ga ratio)對pn接面和蕭特基接面之位障有何影響。為了成長出高品質的銻化鎵薄膜,我們分別以不同的Ⅴ/Ⅲ比值和基板溫度來成長銻化鎵薄膜,並以X-ray繞射和電流電壓關係曲線圖來觀察其形成的薄膜特性。可知當基板溫度為500 ℃、Ⅴ/Ⅲ = 2.5,為p-n二極體形成時的最佳成長條件。
我們從蕭特基二極體的電流電壓關係圖可看出,當銻/鎵之比值越高時,其崩潰電壓會越低。此外,我們可藉由其電流電壓特性來研究GaSb/GaAs和金屬/GaSb之異質界面的特性。也可知其漏電流和表面狀態密度是與Ⅴ/Ⅲ比值有相當程度之關係。
而從熱離子放射理論可知,當銻/鎵比值越高時,其障位高度也會越低。在GaSb磊晶層上沈積金屬形成蕭特基二極體之後,我們可藉由量測出蕭特基二極體之電流電壓特性,來獲得金屬功函數和障位高度之關係,並且進一步地計算出表面狀態密度之值。最後,我們將會發現當Ⅴ/Ⅲ比值增加時,其表面狀態密度將隨之遞減。
Abstract
This study presents the GaSb epitaxial grown by molecular beam epitaxy (MBE) on the semi-insulating GaAs substrate and n+-GaAs substrate. Investigations are made to the effect of Sb4/Ga beam equivalent pressure (BEP) ratios on the current-voltage characteristics of the p-n hetero-junction and the metal-GaSb semiconductor Schottky contact for various metals deposited on n-type GaSb layers. Several growth conditions were taken to improve the quality of GaSb epitaxial films. The structure of GaSb epitaxial layers are characterized by the X-ray diffraction, and the optimum growth conditions 500℃ of substrate temperature and the Sb4/Ga flux ratio about 2~3 have been obtained.
From the I-V curve of GaSb Schottky diodes, we know that the higher Sb4/Ga ratio will induce the lower breakdown voltage. Hence, the interface properties of hetero-junction between the GaSb/GaAs and metal/GaSb can be investigated by the current-voltage characteristics, in which the current leakages and the surface state density are strongly dependent on the ratio of Sb4/Ga BEP.
Based on the thermionic emission theory, the barrier height obtained was decrease with the Sb4/Ga ratio increases. After metal deposited on the GaSb epitaxial film to form the Schottky diode, the density of surface states can be calculated from the relationship of metal work-function and barrier height, which were obtained from the current-voltage characteristics of Schottky diode measurement, and then it also found that the density of surface states show decrease as the Sb4/Ga ratio increase.
目次 Table of Contents
頁次
中文審定書
英文審定書
誌謝 ……………………………………………….… Ⅰ
中文摘要 ……………………………………………….… Ⅱ
英文摘要 ……………………………………………….… Ⅲ
目錄 ……………………………………………….… Ⅳ
圖表目錄 ……………………………………………….… Ⅶ

第一章 緒論………………………………………….… 1
1-1 前言………………………………………….… 1
1-2 歷史發展與背景…………………………….… 2
1-3 研究目的…………………………………….… 4
1-4 論文架構…………………………………….… 5
第二章 銻化鎵的成長特性與蕭特基位障理論………. 7
2-1 銻化鎵之特性與其重要性………………….… 7
2-2 GaSb/GaAs異質接面之理論公式…………..… 8
2-2.1 異質接面能帶結構 8
2-2.2 理想的I-V特性...………………….………….. 14
2-2.3 實際的I-V特性...………………….………….. 15
2-3 蕭特基位障之理論公式………………………. 16
2-3.1 文獻........…………………………..................... 17
2-3.2 金屬-半導體出現在表面狀態的表面障礙理論 18
2-3.3 Schottky二極體的電流傳輸機制…………….. 21
2-3.4 Schottky二極體的電流電壓關係…………….. 22
第三章 實驗方法與步驟…………………………….… 27
3-1 MBE成長技術…………...……………………. 27
3-1.1 MBE系統…………...…………………………. 27
3-1.2 成長環境…………...………………………… 28
3-2 MBE成長銻化鎵薄膜.......……………………. 31
3-2.1 蒸鍍源處理……………………………………. 31
3-2.2 基板處理…………………………………….… 32
3-2.3 實驗步驟............................................................. 32
3-3 不同的Ⅴ/Ⅲ比值對蕭特基二極體特性之影響 33
3-3.1 樣品製備..………………………………...…… 33
3-3.2 實驗步驟………………………………………. 34
3-4 量測儀器............................................................. 35
3-6.1 X-ray…………………………………………… 35
第四章 實驗結果與分析……………………………. 38
4-1 銻化鎵之結構分析……………………………. 38
4-2 銻化鎵之電性分析…………………..………... 39
4-3 不同的Ⅴ�Ⅲ比值對蕭特基二極體的影響…. 40
第五章 結論……………………………………………. 43
參考文獻 …………………………………………………………....... 68
參考文獻 References
1. R. J. Archer and M. M. Atalla, Metals contacts on cleaved silicon surfaces, Ann. N. Y. Acad. Sci., 101(1963)697-709.
2. D. Kahng, Conduction properties of the Au-n-type Si Schottky barrier, Solid-State Electron., 6(1963)281-295.
3. C. R. Crowell and S. M. Sze, Quantum mechanical reflection of electrons at metal-semiconductor barrier : electron transport in semiconductor-metal-semiconductor structures, J. Appl. Phys., 37(1966)2683-2689.
4. D. Kahng and M. P. Lepselter, Planar epitaxial Si Schottky barrier diodes, Bell Syst. Tech. J., 44(1965)1525-1528.
5. M. P. Lepselter and S. M. Sze, Silicon Schottky barrier diode with near-ideal I-V characteristics Bell Syst. Tech. J., 47(1968)195-208.
6. Unitary semiconductor high speed switching device utilizing a barrier diode, U.S. Patent 3,463,975(August 26, 1969), to J. R. Baird.
7. C. A. Mead, Schottky barrier gate field effect transistor, Proc. IEEE, 64(1966)307-308.
8. C. B. Duke, Tunneling In Solids, Academic Press, New York, 1969, p102-110.
9. C. R. Crowell and S. M. Sze, Hot electron transport and electron tunneling in thin film structures, Phys. Thin Films, 4(1967)325-371.
10. A. H. Wilson, A note of the theory of rectification, Proc. R. Soc. London, Ser. A, 136(1932)487-498.
11. R. Stratton, Theory of field emission from semiconductors, Phys. Rev., 125(1962)67-82.
12. W. Schottky and E. Spenke, Wiss. Veroff. Siemens-Werken, 18(1939)225.
13. H. A. Bethe, Theory of the boundary layer of crystal rectifiers, Mass. Inst. Technol. Radiat. Lab. Rep. 43-12, November, 1942.
14. J. Bardeen, Surface states and rectification at a metal-semiconductor contact, Phys. Rev., 71(1947)717-727.
15. J. W. Conley, C. B. Duke, G. D. Mahan and J. J. Tiemann, Electron tunneling in metal-semiconductor barriers, Phys. Rev., 150(1966)466-469.
16. F. A. Padovani and R. Stratton, Field and thermionic field emission in Schottky barriers, Solid-State Electron., 9(1966)695-707.
17. C. R. Crowell and V. L. Rideout, Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers, Solid-state Electron, 12(1969)89-105.
18. C. Y. Chang and S. M. Sze, Carrier transport across metal-semiconductor barriers, Solid-state Electron, 13(1970)727-740.
19. E. L. Murphy and R. H. Good, Thermionic emission, field emission and the transition region, Phys. Rev., 102(1956)1464-1473.
20. C. R. Crowell and S. M. Sze, current transport in metal-semiconductor barriers, Solid-State Electron., 9(1966)1035-1048.
21. S. C. Chen and Y. K. Su, Photoluminescence Study of Gallium Antimonide Grown By Liquid Phase Epitaxy, J. Appl. Phys., 66(1989)350.
22. M. Lee, D. J. Nicholas, K. E. Singer and B. Hamilton, A photoluminescence and Hall-effect study of GaSb grown by molecular beam epitaxy, J. Appl. Phys. 59(1986)2895.
23. S. K. Haywood, M. J. Mason and P. J. Walker, Grown of GaSb by MOVPE, Semicond. Sci. Technol., 3(1988)315.
24. A. M. Cowley and S. M. Sze, Surface States and Barrier Height of Metal-Semiconductor Systems, J. Appl. Phys., 36(1965)3212.
25. A. M. Goodman, Evaporated Metallic Contacts to Conducting Cadmium Sulfide Single Crystals, J. Appl. Phys., 35(1964)573.
26. C. A. Mead and W. G. Spitzer, Phys. Rev. 134(1964)A713.
27. C. R. Crowell, S. M. Sze, and W. G. Spitzer, Appl. Phys. Letters, 4(1964)91.
28. V. L. Rideout, A review of the theory and technology for ohmic contacts to group Ⅲ-Ⅴ compound semiconductors, Solid-State Electron., 18(1975)541-550.
29. S. M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, New York, 1969, p.100.
30. C.R. Crowell, Richardson constant for thermionic emission in Schottky barrier diodes, Solid-State Electron., 8(1965)395-399.
31. F. S. Juang and Y. K. Su, Electrical Properties of Al/n-GaSb Contacts, Solid-State Electron., 32(1989)661.
32. S. K. Cheung and N. W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics, Appl. Phys. Letter, 49(1986)85.
33. M. Mebarki, T. Belatoui, A. Joullie, B. Orsal and R. Alabedra, Reverse current and external quantum efficiency of Zinc diffused 1.3um GaAlAsSb photodiodes, J. Appl. Phys., 68(1990)4106.
34. D. L. Scharfetter, Minority carrier injection and charge storage in epitaxial Schottky barrier diodes, Solid-State Electron., 8(1965)299-311.
35. F. S. Juang and Y. K. Su, Electrical Properties of Al/n-GaSb Contacts, Solid-State Electron., 32(1989)661.
36. 郭家成,以分子束磊晶成長銻化鎵之電性與光性,國立中山大學電機工程學系碩士論文,88.
37. 黃炯舜,原子層-分子束磊晶成長銻化鎵於砷化鎵基材之特性,國立中山大學電機工程學系碩士論文,92.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.189.85
論文開放下載的時間是 校外不公開

Your IP address is 18.191.189.85
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code