Responsive image
博碩士論文 etd-0719107-231411 詳細資訊
Title page for etd-0719107-231411
論文名稱
Title
中央鑽孔鎂合金/碳纖維/聚醚醚酮複材積層板之研製與機械性能探討
Manufacturing and Mechanical Properties of Centrally Notched AZ31/APC-2 Composite Laminates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-14
繳交日期
Date of Submission
2007-07-19
關鍵字
Keywords
鑽孔、複材積層板、疲勞、鎂合金AZ-31、高溫、APC-2
Notch, APC-2, Composite Laminate, Fatigue, Elevated Temperature, Magnesium Alloy AZ-31
統計
Statistics
本論文已被瀏覽 5675 次,被下載 1600
The thesis/dissertation has been browsed 5675 times, has been downloaded 1600 times.
中文摘要
本文旨在探討中央鑽孔鎂合金碳纖維複材積層板常溫及高溫機械性質。使用厚度0.5mm的鎂合金薄板及將碳纖維/聚醚醚酮預浸布堆疊成類似均向疊和十字疊兩種疊序研製五層異向性複材積層板。鎂合金薄板經過研磨並以丙酮清洗乾燥後以鉻酸(CrO3)溶液進行表面處理,再使用改良隔膜成型法固化成型。完成後的積層板切割成試片再使用鑽孔機在試片中央鑽出一直徑4mm圓孔。
首先進行室溫下25°C及高溫75°C、100°C、125°C和150°C下的靜態拉伸試驗以獲致各溫度下抗拉強度、彈性係數以及應力-應變曲線。同溫度下比較鑽孔試片強度,類似均向疊鑽孔試片強度約比未鑽孔試片衰退近四成,而十字疊鑽孔試片強度約為未鑽孔試片一半。而勁度方面類似均向疊與十字疊鑽孔試片略低於未鑽孔試片。而隨著溫度增加鑽孔試片強度隨之降低。勁度方面,類似均向疊鑽孔試片隨著溫度增加逐漸下降,十字疊大致一樣變化很小。
接著進行各溫度下拉伸-拉伸疲勞實驗,以獲致各溫度下鑽孔試片疲勞壽命以及負載-振次(P-N)曲線,以取代S-N曲線避免鑽孔應力集中將問題簡化之,並將結果與未鑽孔鎂合金碳纖維複材積層板做比較討論。負載相同的情況下,鑽孔試片抗疲勞性質較差,但在相同之負載比時,鑽孔試片之無因次化P-N曲線皆在未鑽孔試片無因次化P-N曲線上表示鑽孔試片皆比未鑽孔試片有較佳的抗疲勞性質。隨著溫度提高,鑽孔試片的抗疲勞性質隨之下降。
疲勞實驗中錄影觀測試片受負載情形,發現表面鎂合金自鑽孔兩端產生裂縫並橫向成長終至斷裂,但實驗過程中尚未發現試片疊層中有脫層現象。觀察破斷面發現類似均向疊試片之鎂合金材料有較明顯頸縮現象,而十字疊則不明顯,有近似脆性之破壞。最後經由光學顯微鏡OM觀察發現改良鎂合金薄板表面處理製程確實能有效的減少熱壓後脫層的機率。
Abstract
The thesis aims to investigate the mechanical behavior and properties of a centrally notched hybrid Magnesium/Carbon-Fiber/PEEK laminate at elevated temperature. The high performance hybrid composite laminates of 0.5mm Magnesium sheets sandwiched by Carbon-Fiber/PEEK (APC-2) guasi-isotropic and cross-ply laminates were fabricated. The Magnesium sheets were polished and cleaned by acetone, then underwent the surface treatment by CrO3-base solvent etchants, cured by the improved diaphragm curing process. The finished laminates were cut into the specimen than drilled a 4mm diameter hole in the center of specimen.

At first, the ultimate strength, stiffness and stress-strain diagram were obtained due to static tension tests at elevated temperature, such as 25°C(RT), 75°C, 100°C, 125°C, and 150°C. Compare of them, the notched quasi-isotropic ones drop almost 50% in strength, and the notched cross-ply ones are half of unnotched ones. The two lay-up notched specimens are slightly below the unnotched ones in stiffness. The strength of the specimens are decrease as temperature rise. As the temperature rise the stiffness of quasi-isotropic ones drop, but it just change little in cross-ply ones.

Then the notched specimen fatigue life and load-cycle (P-N) curves were obtained by tension-tension fatigue test. The P-N curves were adopt to prevent the stress concretion of the notched specimen. Consider the same loading, notched specimens has worse fatigue behavior, but in the same load ratio, the normalized P-N curves of the unnotched ones were below the notched ones means notched ones has better fatigue behavior.

Recording the specimen image by video camera during the testing process, the cracks at the edge of hole were found. However delamination was not found. Necking was observed in quasi-isotropic specimens, but not in cross-ply. Observed by optical microscopy, the improved surface treatment will decrease the probability of delamination from 20% to less than 10% after hot press.
目次 Table of Contents
摘要 I
英文摘要 II
目錄 III
表目錄 V
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-1-1 材料概述 1
1-1-2 鎂合金AZ31 1
1-2 研究方向 2
1-3 文獻回顧 3
1-4 組織章節 5

第二章 實驗工作 6
2-1 實驗材料 6
2-2 儀器設備 6
2-3 複材積層板製程 7
2-3-1 熱壓前過程 7
2-3-2 熱壓成積層板 8
2-4 試片切割鑽孔及分組 9
2-5 拉伸與疲勞實驗 10
2-6 電子顯微鏡 11

第三章 實驗結果 18
3-1 靜態拉伸 18
3-2 疲勞試驗 19
3-3 斷面觀察與電子顯微鏡 20

第四章 分析與討論 59
4-1 鑽孔對積層板機械性質之影響 59
4-1-1極限強度與機械性質 59
4-1-2抗疲勞影響 60
4-2 破斷面觀察 61
4-3 表面處理改進 63

第五章 結論 66
參考文獻 68
參考文獻 References
1. George F. Vander Voort, “Metallography, principles and practice”.
2. Polmear, I. J., “Overview: Magnesium Alloys and Applications,” Materials Science and Technology, Vol.10, No.1, 1994, pp. 1-16.
3. Polmear, I. J., “Recent Developments in Light Alloys,” Materials Transactions, JIM, Vol.37, No.1, 1996, pp.12-31
4. Kojima, Y., “Platform Science and Technology for Advanced Magnesium Alloys,” Materials Science Forum, Vol.350-351, 2000, pp. 3-18.
5. Katzman, H. A., “Fibre Coatings for the Fabrication of Graphite-reinforced Magnesium Composites,” J. of Materials Science, Vol.22, 1987, pp.144-148.
6. Wu, F., Zhu, J., Ibe, K., and Oikawa, T., “Analysis of the Interface in Graphite/Magnesium Composites at the Nanometer Scale,” Composites Science and Technology, Vol.58, 1998, pp. 77-82.
7. Lin C. T., Kao P. W., and Yang F. S., “Fatigue Behaviour of Carbon Fiber-reinforced Aluminum laminates”. Journal of Composite Materials, 22: pp135-141,1991
8. Kuo, M. C., Huang, J. C., Chen, M., and Jen, M.-H.R., “Fabrication of High Performance Magnesium/Carbon-Fiber/PEEK Laminates Composites,” Materials Transactions, the Japan Institute of Metals, Vol.44, No.8, 2003, pp. 1613-1619.
9. Diao, X., Lin, T., and Mai, Y. W., 1997,“Fatigue Behavior of CF / PEEK Composites Kaminates Made From Commingled Prepreg. Part Ⅱ:Statistical Simulation“, Composite Part-A, pp.749~755.
10. Gao, S. L. and Kim, J. K., ”Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion.” Composite, Vol.31, 2000, pp. 517-530.
11. Gardin, C. H., and Frenot, M. C. L., 1992, “Fatigue Behavior of Thermoset and Thermoplastic Cross-Ply Laminates“, Composites, Vol.23, pp.109~116.
12. Moffatt, J.E., and Plumbridge, W.J., and Hermann, R., 1997, “High Temperature Crack Annealing Effects on Fracture Toughness of Alumina and Alumina-SiC composite”, British Ceramic Transactions, Vol.96, pp.23~29.
13. Rao, K.T.V., and Ritchie, R.O.,1998, “High-Temperature Fracture and Fatigue Resistance of a Ductile B-TiNb Reinforced G-TiAl Intermetallic Composite”, Acta Materialia, Vol.46, pp.4167~4180.
14. Xia,K., and Langdon, T.G., 1996, “Fracture Behavior at Elevated Temperatures of Alumina Matrix Composites Reinforced with Silicon Carbide Whiskers”, Journal of Materials Science, Vol.31, pp.5487~5492.
15. Telreja, R., 1987, Fatigue of Composite Materials, Technomic Publishing Co. Inc.
16. Hwang, W., and Han, K.S., 1986, “Fatigue of Composite-Fatigue Modulus Concept and Life Prediction”, Journal of Composite Materials, Vol.20, pp.154~165.
17. Subramanian S., Reifsnider K.L., and Stinchcomb W.W., 1995, “A Cumulative Damage Model to Predict The Fatigue Life of Composite Laminates Including The Effect of a Fiber-Matrix Interphase”, International Journal of Fatigue, Vol.17, pp.343~351.
18. Miyano, Y., and Nakada, M., 1997, “Prediction of Flexural Fatigue Strength of CRFP Composites Under Arbitrary Frequency, Stress Ratio and Temperature”, Journal of Composite Materials, Vol.31, pp.619~638.
19. Schaff, J. R., 1997, “Life Prediction Methodology for Composite Structures. Part Ⅱ-Spectrum Fatigue”, Journal of Composite Materials, Vol.31, pp.158~181.
20. Song, D. Y., 1997, “Fatigue Life Prediction of Cross-Ply Composite Laminates”, Materials Science and Engineering-A, pp.329~335.
21. Hwang, W., and Han, K. S., 1989, “Fatigue of Composite Materials-Damage Model and Life Prediction”, American Society for Testing and Materials STP 1012, Philadelphia, pp.87~102.
22. Knut, O. R., and Andreas, T. E., 1996, “Estimation of Fatigue Curves for Design of Composite Laminates”, Composites Part-A, pp.485~491.
23. Kevin D Clowly and Peter W. R. Beaumont, 1997 “Damage Accumulation at Notches and The Fracture Stress of Carbon-Fibre/Polymer Composites: Combined effects of stress and temperature.” Composites Science and Technology, vol.57, pp.1211-1219
24. Kawai, M., and Maki, N., 2006 “Fatigue Strength of Cross-ply CFRP Laminates at Room and High Temperature and Its Phenomenological Modeling”. International Journal of Fatigue, vol.28, pp.1297-1306.
25. Spearing, S. M., Beaumont, P. W. R., and Kortschot, M. T., 1992 “The Fatigue Damage Mechanics of Notched Carbon Fibre/PEEK Laminates”. Composites, Vol.23 No.5, pp.305-311
26. Ferreria J. A., Costa J. D., and Richardson M. O., 1997 “Effect of Notch and Test Conditions on the Fatigue of a Glass-Fibre-Reinforced Polypropylene Composite”. Composites Science and Technology. Vol.57, pp.1243-1248.
27. Sung W. Choi, H. Thomas Hahn, and Peter Shyprykevich, 2002 “Damage Development in Notched Composite Laminates Under Compression-Dominated Fatigue”. Composites Science and Technology, Vol.62, pp.851-860.
28. Cortes’ P., and Cantwell W. J., 2006 “The Fracture Properties of a Fibre-Metal Laminate Based on Magnesium Alloy“. Composites Part B, No.37, pp.163-170.
29. Dimant R.A., and Shercliff H.R., and P.W.R. Beaumont.,2002, “Evaluation of a damage-mechanics approach to the modeling of notched strength in KFRP and GRP cross-ply laminate.” Composites Science and Technology, Vol.62, pp.255-263.
30. Wang, C. M., and Shin, C. S., 2002, “Residual properties of notched [0/90]4S AS4/PEEK composite laminates after fatigue and re-consolidation” Composites:Part B(33),pp.67-76.
31. Jen, Ming-Hwa R., and Tseng, Yu-Chung., and Lin, Wei-Hwang, 2006,“Thermo-mechanical fatigue of centrally notched and unnotchedAS-4/PEEK APC-2 composite laminates” International Journal of Fatigue, Vol. 28, pp.901-909
32. 李傳華, 1998, “複合材料積層板疲勞強度與壽命預測即層間應力分析”, 國立中山大學機械所博士論文
33. 張熙超, 1999, “ 碳纖維/聚醚醚酮複合材料積層板鑽孔及溫度效 應之破壞機制與機械性質分析 ”, 國立中山大學機械所碩士論文.
34. 曾育鍾, 2000, ” 中央鑽孔碳纖維/聚二醚酮複材積層板之高溫疲勞探討 ”, 國立中山大學機械所碩士論文.
35. 李秉原, 2006,”鎂合金/碳纖維/聚醚醚酮米複材積層板之研製與機械性能探討” ,國立中山大學機電所碩士論文.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code