Responsive image
博碩士論文 etd-0719108-213007 詳細資訊
Title page for etd-0719108-213007
論文名稱
Title
釀酒酵母在YDL100c缺失下熱休克引發細胞死亡研究
Study of heat-shock-induced cell death in Saccharomyces cerevisiae with a deficiency of YDL100c
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-26
繳交日期
Date of Submission
2008-07-19
關鍵字
Keywords
釀酒酵母、YDL100c基因、致死熱休克
Saccharomyces cerevisiae, YDL100c, lethal heat shock
統計
Statistics
本論文已被瀏覽 5661 次,被下載 2
The thesis/dissertation has been browsed 5661 times, has been downloaded 2 times.
中文摘要
YDL100cp 是在釀酒酵母中發現的ArsA 同源蛋白。之前的研究顯示YDL100c 基因的缺失並不會致死但無法在40°C 中生長。為研究YDL100c 在致死熱休克的反應中所扮演之角色,野生 (WT) 菌株及缺乏YDL100c 基因 (KO) 的菌株經過50°C 30 分鐘的致死性熱休克處理後。發現KO菌株經30°C 熱休克處理後其生長率及存活率較WT菌株低,而且此差異可經由轉殖攜有YDL100c 基因的載體所互補。在釀酒酵母中氧化壓力被證明是涉及在熱引發的細胞死亡,因此,進一步分析細胞內分子氧化的程度,抗氧化基因的表現,trehalose 的累積和glutathione (GSH) 的含量。當暴露於50°C 下,KO菌株的分子氧化程度是較WT菌株增加,即熱休克引發細胞死亡與細胞內的氧化相關,而結果也顯示在熱休克後GSH 和trehalose 的累積在WT菌株及缺乏KO菌株中均減少,表示GSH 和trehalose 在熱休克後可能不直接涉及KO菌株的緩慢生長。然而,當暴露於50°C 時,KO菌株的CTT1 表現量則低於WT菌株。當細胞內分子氧化的程度增加下,會減少CTT1的表現量,意味著YDL100c 可能涉及活化CTT1 的表現。
Abstract
YDL100cp is the ArsA homologous protein found in Saccharomyces cerevisiae. Previous studies show that deletion of YDL100c was not lethal but unable to grow at 40°C. To study the role of YDL100c in response to lethal heat shock, the wild type strain (WT) and YDL100c disrupted strain (KO) were exposed to 50°C for 30 min. The growth and survival rate of KO cells at 30°C after heat-shock was lower than that of WT cells, and the difference was complementated by introducing the plasmid carrying YDL100c. The oxidative stress has been shown to be involved in the heat-induced cell death in S. cerevisiae. Therefore, the intracellular molecular oxidation level, expression of antioxidant genes, trehalose accumulation, and glutathione (GSH) content were further examined. The intracellular molecular oxidation was increased in KO compared to WT when exposed to 50°C, suggesting heat-shock-induced cell death is related to oxidation of intracellular components. The results also demonstrated that both WT and KO had a decreased GSH content and trehalose accumulation after heat-shock, indicating that GSH and trehalose are not directly involved in the slow growth of KO after heat-shock. However, CTT1 expression is decreased in KO compared to WT when exposed to 50°C, suggesting that decreased CTT1 expression resulted in the increased intracellular oxidation and YDL100c is likely involved in the activation of CTT1 expression.
目次 Table of Contents
Introduction--------------------------------------------------------1
Materials and Methods----------------------------------------13
Results------------------------------------------------------------20
Discussion-------------------------------------------------------25
Figures------------------------------------------------------------30
References-------------------------------------------------------37
Appendixes-------------------------------------------------------44
參考文獻 References
1. Gladysheva TB, Oden KL, Rosen BP. Properties of the arsenate reductase of plasmid R773. Biochemistry 1994, 33: 7288-7293.
2. Owolabi JB, Rosen BP. Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J Bacteriol 1990, 172: 2367-2371.
3. Suzuki K, Wakao N, Kimura T, Sakka K, Ohmiya K. Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl. Environ. Microbiol 1998, 64: 411-418.
4. Ghosh M, Shen J, Rosen BP. Pathways of As (III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1999, 96: 5001-5010.
5. Rosen BP. Families of arsenic transporters. Trends Microbiol 1999, 7: 207-212.
6. Chen CM, Misra TK, Silver S, Rosen BP. Nucleotide sequence of the structural genes for an anion pump. The plasmid encoded arsenical resistance operon. J Biol Chem 1986, 261: 15030-15038.
7. Hsu CM, Rosen BP. Characterization of the catalytic subunit of an anion pump. J Biol Chem 1989, 264: 17349-17354.
8. Bhattacharjee H, Rosen BP. Role of conserved histidine residues in
metalloactivation of the ArsA ATPase. Biometals 2000, 4: 281-288.
9. San Francisco MJ, Tisa LS, Rosen BP. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R773. Mol Microbiol 1989, 3: 15-21.
10. Tisa LS, Rosen BP. Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem 1990, 265: 190-194.
11. Bhattacharjee H, Ho YS, Rosen BP. Genomic organization and chromosomal localization of the Asna1 gene, a mouse homologue of a bacterial arsenic-translocating ATPase gene. Gen 2001, 272: 291-299.
12. Shen J, Hsu CM, Kang BK, Rosen BP, Bhattacharjee H. The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals 2003, 3: 369-378.
13. Bobrowicz P, Wysocki R, Owsianik G, Goffeau A, Ulaszewski S. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 1997, 13: 819-828.
14. Wysocki R, Bobrowicz P, Ulaszewski S. The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 1997, 272: 30061-30066.
15. Vincent J. Higgins, Nazif Alic, Geoffrey W. Thorpe, Michael Breitenbach, Veronica Larsson, Ian W. Dawes. Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast 2002, 19: 203–214.
16. Boskovic J, Soler-Mira A, Garcia-Cantalejo JM, Ballesta JP, Jimenez A, Remacha M. The sequence of a 16,691 bp segment of Saccharomyces cerevisiae chromosome IV identifies the DUN1, PMT1, PMT5, SRP14 and DPR1 genes, and five new open reading frames. Yeast 1996, 12: 1377-1384.
17. Lindquist S, Kim G. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci U S A. 1996, 93: 5301-5306.
18. Zuniga S, Boskovic J, Jimenez A, Ballesta JP, Remacha M. Disruption of six Saccharomyces cerevisiae novel genes and phenotypic analysis of the deletants. Yeast 1999, 15: 945-953.
19. 洪詩雅, (2002). 酵母菌中YDL100c基因之表現及其可能功能探討, 國立中山大學生物科學研究所碩士論文.
20. Aherne SA, O'Brien NM. Mechanism of protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide and menadione-
induced DNA single strand breaks in Caco-2 cells. Free Radic Biol Med 2000, 6: 507-514.
21. Grably MR, Stanhill A, Tell O, Engelberg D. HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol 2002, 44: 21-35.
22. Smith BJ, Yaffe MP. Uncoupling thermotolerance from the induction of heat shock proteins. Proc Natl Acad Sci 1991, 88: 11091-11094.
23. 郭雅帛, (2002). ArsA 同源蛋白ARR4 在酵母細胞熱耐受性表現的角色, 國立中山大學生物科學研究所碩士論文.
24. Davidson JF, Whyte B, Bissinger PH, Schiestl RH. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1996, 93: 5116-5121.
25. Francisco Estruch. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol 2000, 4: 469-486.
26. Aline de Souza Espindola, Debora Silva Gomes, Anita Dolly Panek, Elis Cristina Araujo Eleutherio. The role of glutathione in yeast dehydration tolerance. Cryobiology 2003, 47: 236-241.
27. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000, 279: L1005-L1028.
28. Derek J. Jamieson. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998, 14: 1511-1527.
29. Skoneczny M, Chelstowska A, Rytka J. Study of the coinduction by fatty acids of catalase A and acyl-CoA oxidase in standard and mutant Saccharomyces cerevisiae strains. Eur J Biochem 1988, 174: 297-302.
30. Cohen G, Rapatz W, Ruis H. Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem 1988, 176: 159-163.
31. Hartig A, Ruis H. Nucleotide sequence of the Saccharomyces cerevisiae CTT1 gene and deduced amino-acid sequence of yeast catalase T. Eur J Biochem 1986, 160: 487-490.
32. Izawa S, Inoue Y, Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 1996, 320: 61-67.
33. Izawa S, Inoue Y, and Kimura A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 1995, 368: 73-76.
34. Van Loon AP, Pesold-Hurt B, Schatz G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci U S A 1986, 83: 3820-3824.
35. Bermingham-McDonogh O, Gralla EB, Valentine JS. The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci U S A 1988, 85: 4789-4793.
36. Russell J, Ness J, Chopra M, McMurray J, Smith WE. The assessment of the HO. scavenging action of therapeutic agents. J Pharm Biomed Anal 1994, 7: 863-866.
37. Grant CM, Maciver FH, Dawes IW. Stationary-phase induction of GLR1 expression is mediated by the yAP-1 transcriptional regulatory protein in the yeast Saccharomyces cerevisiae. Mol Microbiol 1996, 4: 739-476.
38. Daniel S, Jean L, Michel B. A Genetic Investigation of the Essential Role of Glutathione. The Jouranl of Biological Chemistry 2001, 276: 7011–7016.
39. Michiels C, Raes M, Toussaint O, Remacle J. Importance of Seglutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical Biol 1994, 17: 235-248.
40. Stadtman TC. Selenocysteine. Annu. Biochem 1996, 65: 83-100.
41. Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Van der Zee P, Wiemken A. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 1992, 209: 951-959.
42. De Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-
phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 1993, 212: 315-323.
43. Vuorio OE, Kalkkinen N, and Londesborough J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 1993, 216: 849-861.
44. Reinders A, Burckert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, De Virgilio C. Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 1997, 4: 687-695.
45. Hottiger T, Boller T, Wiemkenm A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 1987, 220: 113–115.
46. Hottiger T, Schmutz P, Wiemken A. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 1987, 69: 5518–5522.
47. Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1998, 1: 639-648.
48. Pedreno Y, Gimeno-Alcaniz JV, Matallana E, Arguelles JC. Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalase genes. Arch Microbiol 2002, 177: 494-499.
49. De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 1994, 219: 179-186.
50. Lewis JG, Learmonth RP, Watson K. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 1995, 141: 687-694.
51. Costa V, Moradas-Ferreira P. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 2001, 4: 217-246
52. Ruis H, Schuller C. Stress signaling in yeast. Bioessays 1995, 17: 959-965.
53. Martínez-Pastor MT, Marchler C, Schuller A, Marchler-Bauer H, Ruis H, Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 1996, 15: 2227–2235.
54. Görner WE, Durchschlag MT, Martinez-Pastor F, Estruch G, Ammerer B, Hamilton H, Ruis H, Schuller C. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 1998, 12: 586–597.
55. Jacquet MG, Renault S, Lallet J, De Mey, Goldbeter A. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J Cell Biol 2003, 161: 497–505.
56. Amorós M, Estruch F. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a geneand stress type-dependent manner. Microbiol 2001, 39: 1523–1532.
57. Boy-Marcotte EG, Lagniel M, Perrot F, Bussereau A, Boudsocq M, Jacquet, Labarre J. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Microbiol 1999, 33: 274–283.
58. Bulman AL, Nelson HC. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor. Proteins 2005, 58: 826–835.
59. Becker J, Craig EA, Eur J Biochem. Heat-shock proteins as molecular chaperones. Department of Biomolecular Chemistry 1994, 219: 11-23.
60. Kei-ichi Sugiama, Atsuki Kawamura, Shingo Izawa, Yoshiharu Inoue. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochem J 2000, 352: 71-78.
61. Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM. Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 1998, 273: 33311-33319.
62. Rukhsana Hasan, Christophe Leroy, Anne-Dominique Isnard, Jean Labarre, Emmanuelle Boy-Marcotte, Michel B. The control of the yeast H2O2 response by the Msn2/4 transcription factors. Molecular Microbiology 2002, 45: 233-241.
63. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). The EMBO Journal 1996, 15: 2227-2235.
64. W Mark Toone, Nic Jones. AP-1 transcription factors in yeast. Oncogenes and cell proliferation 1999, 9: 55-61.
65. 陳涵音, (2004). yArsA蛋白在釀酒酵母熱耐受性所扮演的角色, 國立中山大學生物科學研究所碩士論文.
66. Wojda I, Alonso-Monge R, Bebelman JP, Mager WH, Siderius M. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordination activity of MAP kinase pathways. Microbiol 2003, 149: 1193-1204.
67. Costa V, Moradas-Ferreira P. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 2001, 4: 217-246.
68. Brennan RJ, Schiestl RH. Cadmium is an inducer of oxidative stress in yeast. Mutat Res 1996, 356: 171-178.
69. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984, 219: 1-14.
70. Varela JCS, Praekelt UM, Meacock PA, Planta RJ, Mager WH. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 1995, 15: 6232-6245.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.180.244
論文開放下載的時間是 校外不公開

Your IP address is 18.189.180.244
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code