Responsive image
博碩士論文 etd-0719110-125755 詳細資訊
Title page for etd-0719110-125755
論文名稱
Title
電流與動態電阻效應對交流電電阻點銲輸送現象之影響
Electrical Current and Dynamic Electrical ResistanceEffect on Transport Processes in AC Resistance Spot Welding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-30
繳交日期
Date of Submission
2010-07-19
關鍵字
Keywords
動態電阻、居禮溫度、熔區成長、接觸電阻、電阻點銲
nugget formation, Curie temperature, electrical contact resistance, dynamic resistance, Resistance spot welding
統計
Statistics
本論文已被瀏覽 5660 次,被下載 12
The thesis/dissertation has been browsed 5660 times, has been downloaded 12 times.
中文摘要
電阻點銲過程中,工件的熔區冷卻率、溶質分佈、以及固化形狀影響熔區的微結構,而交流與直流電源對其作用被廣泛探討;於加熱、熔化、冷卻、以及固化期間,本文採用有限差分法,預測工件及電極的輸送現象;研究模式可說明電磁力、電極-工件介面與工件-工件接合面的生成熱、以及動態電阻,後者為工件本身電阻、工件-工件接合面接觸電阻、以及電極-工件介面接觸電阻的總和;其中接觸電阻包含收縮電阻與薄膜電阻,受工件硬度、工件溫度、電極力、以及工件表面狀況影響。電阻點銲採用交流電源所產生橢圓形熔區,不同於直流電源所產生者;熔區的邊界薄層與內部所含溶質量多於其它位置。
交流電源電阻點銲過程中,動態電阻對工件的熔區冷卻率、溶質分佈、以及固化形狀的影響被深入探討。計算結果:顯示增加收縮電阻與居禮溫度,熔區提早成長,高居禮溫度可加強溶質的傳遞與混合,但電極底部錐角處的工件產生熔化,因此可調節溶質含量,改變居禮溫度,控制銲接質量。
Abstract
The effects of AC and DC on cooling rate, solute distribution and nugget shape after solidification, which are responsible for microstructure of the fusion zone, during resistance spot welding are realistically and extensively investigated. The finite difference method is used to predict transport variables in workpieces and electrodes during heating, melting, cooling and freezing periods. The model accounts for electromagnetic force, heat generations at the electrode-workpiece interface and faying surface between workpieces, and dynamic electrical resistance including bulk resistance and contact resistances at the faying surface and electrode-wokpiece interfaces, which are function of hardness, temperature, electrode force, and surface condition. The computed results show that in contrast to DC, using AC readily produces the nugget in an ellipse shape. Deficit and excess of solute content occur in a thin layer around the boundary and interior of the nugget, respectively.
The effects of dynamic electrical resistance subject to AC (Alternative current) on transport variables, cooling rate, solute distribution and nugget shape after solidification during resistance spot welding are realistically and extensively investigated. The model accounts for electromagnetic force, heat generation and contact resistances at the faying surface and electrode-workpiece interfaces and bulk resistance in workpieces. Contact resistance are comprised of constriction and film resistances, which are functions of hardness, temperature, electrode force and surface condition. The computed results show that the weld nugget readily occurs by increasing constriction resistance and Curie temperature. High Curie temperature enhances convection and solute mixing, and readily melts through the workpiece surface near the electrode edge. Aside from finding the significant effect of Curie temperature on resistance spot welding, this study indicates that any mean (For example, adjusting solute content) to reduce Curie temperature can be a new way to control weld quality.
目次 Table of Contents
目錄
中文摘要........................................................................................................................I
英文摘要.......................................................................................................................II
謝誌...............................................................................................................................IV
目錄.....................................................................................................................….....V
圖表索引..........................................................................................................….…..VII
符號說明............................................................................................................…....XII
第一章 緒論...........................................................................................................1
1-1 簡介...........................................................................................................1
1-2 研究目的..................................................................................................3
1-3 文獻回顧 ................................................................................................4
第二章 理論分析...................................................................................................14
2-1 座標系與假設條件 ............................................................................14
2-2 接觸電阻(Electrical contact resistance ).............................................15
2-3 工件之統御方程式 ............................................................................18
2-4 電極之統御方程式 ............................................................................20
2-5 邊界條件與初始條件..........................................................................21
2-6 數值方法...............................................................................................24
第三章 結果與討論..............................................................................................28
3-1 動態電阻之模擬..................................................................................28
3 -2 熱.流場之模擬......................................................................................31
第四章 結論..........................................................................................................68
4-1 動態電阻變化.....................................................................................68
4-2 溫度場、速度場、生成熱、濃度、熔區成形、以及熱傳遞...69
參考文獻 ..............................................................................................................71
附錄........................................................................................................................78
參考文獻 References
參考文獻
1.L.Han,M.Thornton,D.Boomer,M.Shergold,2010,”Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding”,Journal of Materials Precessing Technology 210 (2010)1076-1082.
2. Hua Wang, Yansong Zhang, Guanlong Chen,2009,”Resistance spot welding processing monitoring based on electrode disllacement curve using moving range chart”,Measurement 42 (2009)1032-1038.
3. Oscar Martin,Manuel Lopez,Pilar De Tiedra,Manuel San Juan,2008,”Prediction of magnetic interference from resistance spot welding processes on implantable cardioverter-defibrillators”,JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 206(2008) 256-262.
4. Noden, I.R., Serajzaden, S., and Kokabi, A.Ho, 2008, "Simulation of welding residual stress in resistance spot welding, FE modeling and X-ray verification ", JOURNAL OF MATERIALS PROCRSSING TECHNOLOGY 2005( 2008 ) 60-69.
5. Fukumoto, A., Fujiwara, K., Toji, S., and Yamamoto, A., 2008, " Small-scale resistance spot welding of austenitic stainless steels ", Materials Science and Engineering A 492,(2008) 243-249.
6. Li, Y.B., and Lin, Z.Q., 2007, "Numerical analysis of magnetic fluid dynamics behaviors during resistance spot welding ", JOURNAL OF AppLIED PHYSICS 101, 053506, 1-10.
7. Gould, J.E., Khurana, S.P., and Li, T., MAY 2006, "Predictions of Microstructures when welding Automotive Advanced High-Strength steels ", Welding Journal, P111s-116s.
8. Zhang, H., and Senkara, J., 2006, Resistance Welding:fundamentals and applications, CRC Press Taylor & Francies Group.
9. De, A., Dorn, L., and Momeni, K., 2005, "Probing the role of instantaneous current wavefrom in numerical modeling of resistance spot welding process ", Science and Technology of Welding and Joining, Vol.10, No.3, p325-334.
10. Brain Rooks, 2003, "Advances in resistance welding for body - in - white ", Assembly Automation Volume 23. Number 2. pp. 159 – 162.
11. Wei, P.S., Wang, S.C., and Lin, M.S., 2001, "Modelling Dynamic Electrical Resistance During Resistance Spot Welding ", ASME Journal of Heat Transfer, Vol. 123, pp. 1-10.
12. Khan, J.A., Broach, K., and Arefin Kabir, A.A.S., January-March 2000, "Numerical Thermal Model of Resistance Spot Welding in Aluminum ", JOURAL OF THERMOPHYSICS AND HEAT TRANSFER Vol.14, No.1, 88-95.
13. Crinon, E., and Evans, J.T., 1998, "The Effect of Surface Roughness, Oxide Film Thickness and Interfacial Sliding on the Electrical Contact Resistance of Aluminum ", Master, Sci., Eng. A, A242, pp. 121-128.
14. Wei, P.S., Wang, S.C., and Lin, M.S., 1996, " Transfer Phenomena During Resistance Spot Welding ", ASME Journal of Heat Transfer, Vol. 118, pp. 762-773.
15. Greenwood, J.A., 1996, "Constriction Resistance and the Real Area of Contact ", British Journal of Applied Physics, Vol. 17, pp-1621-1632.
16. Incropera and De Witt, 1996, "Fundamentals of Heat and Mass Transfer ", John Wiley & Sons, Inc.
17. Gould, J.E., May 1994, "Modeling Primary Dendrite Arm Spacing in Resistance Spot Welds Part I – Modeling Studies ", Welding Research Supplement, 67-s-74-s.
18. Gould, J.E., May 1994, "Modeling Primary Dendrite Arm Spacing in Resistance Spot Welds Part II – Experimental studies ", Welding Research Supplement, 91-s-101-s.
19. Han, Z., Indacochea, J.E., Chen, C.Ho, and Bhat, S., May 1993, "Weld Nugget Development and Integrity in Resistance Spot Welding of High-Strength Cold-Rolled Sheet Steels ", Welding Strength Supplement, 209-s-216-s.
20. Volger, M.M., and Sheppard, S.D. 1993, " Electrical Contact Resistance Under High Loads and Elevated Temperatures ", Welding Journal, Vol.72, pp.231-s-238-s.
21. Tsai, C.L. ,Jammal, O.A., Papritan, J.C., and Dickinson, D.W.,1992,"Modeling of Resistance Spot Weld Nugget Growth", Welding Journal, Vol.70, pp.47-s-54-s.
22. Tsai, C.L., Dai, W.L., Dickinson, D.W., and Papritan, J.C., 1991, "Analysis and Development of a Real-Time Control Methodology in Resistance Spot Welding ", Welding Journal, Vol.69, pp. 339-s-351-s.
23. Wei, P.S., and Yeh, F.B., 1991, "Factor Affecting Nugget Growth With Mushy – Zone Phase Change During Resistance Spot Welding ", ASME Journal of Heat Transfer, Vol.113, pp. 643-649.
24. Sheppard, S.D., 1990, " Thermal and Mechanical Simulations of Resistance Spot Welding ", Welding Research Bulletin, Aug, No.356, pp. 34 – 41.
25. Wei, P.S., and Ho, C.Y., 1990, "Axisymmetric Nugget Growth During Resistance Spot Welding ", ASME Journal of Heat Transfer, Vol. 112, pp. 309 – 316.
26. W.V.ALCINI:Weld.j.1990,69,117s-180s.
27. Kim ,E.W ,and Eagar ,T.W ,August 1989 , "Measurement of Transient Temperature Response during Resistance Spot Welding " ,Welding Research Supplement ,303-s-312-s.
28. Cho, H.S., and Cho, Y.J., June 1989, "A Study of the Thermal Behavior in Resistance Spot Welds ", Welding Research Supplement, 236-s-244-s.
29. Goodman, J.N., and Page T.F., 1989, " The Contact Resistance and Wear Behaviour of Seperable Electrical Contact Material ", Wear, Vol.131, pp. 177-191.
30. Bennon, W.D., and Incropera, F.P., 1988, "Numerical Analysis of Binary of Binary Solid – Liquid Phase Change Using a Continuum Model ", International Journal of Heat and Mass Transfer, Vol.13, pp. 277 – 296
31. Bennon, W.D., and Incropera, F.P., 1987, "A Continuum Model for Momentum, Heat and Species Transport in Binary Solid – Liquid Phase Change Systems – I. Model Formulation ", International Journal of Heat and Mass Transfer, Vol.30, pp. 2161 – 2170.
32. Gedeon, S.A., Sorensen, C.D., Ulrich, K.T., and Eagar, T.W., DEC 1987, "Measurement of Dynamic Electrical and Mechanical Properties of Resistance Spot Welds ", Welding Research Supplement, 378-s-385-s
33. Gould,J.E. ,1987, "An Examination of Nugget Development during Spot Welding, Using Both Experimental and Analytical Techniques", Welding Journal, Vol.66, pp. 1-s-10-s.
34. Watanabe, T., 1986, " New Instrument for Measuring Contact Resistance Developed for Studying Electrical Contact Phenomena ", Wear, Vol. 112, pp. 1-15.
35. Boyer, H.E., and Gall, T.L., 1985, Metal Handbook Desk Edition, ASME.
36. AMERICAN SOCIETY FOR MEALS, 1983, "Metals Handbook ", Vol.6 Welding, Brazing, and Soldering.
37. Potankar, S.V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., New York.
38. Dickinson, D.W., Franklin, J.E., and Stanya, A., June 1980, "Characterization of Spot Welding Behavior by Dynamic Electrical Parameter Monitoring ", Welding Research Supplement, 170-s-176-s.
39. Grange, R.A., Hribal, C.R., and Porter, L.F., 1977, "Hardness of Tempered Martensite in Carbon and Low-Alloy Steels ", Metallurgical Transaction A., Vol.8A, pp. 1775-1785.
40. One, Y., Hirayama, K., and Furukawa, K., 1974, "Electrical Resistivity of Molten Fe – C, Fe – Si, and Fe - C – Si, Alloys ", Tetsu – Hagan’e, Vol.60, pp. 2110-2118.
41. Bhattacharya, S., and Anderews, D.R., September 1974, "Significance of Dynamic Resistance Curves in the Theory and Practice of Spot Welding ", Welding and Metal Fabrication, P296-301.
42. Holm, R., 1967, Electric Contacts – Theory and Application, 4th edition, Springer – Verlag, Berlin.
43. Touliukian, Y.S., editor, 1967, Thermophysical Properties of High Temperature Solid Materials, Vol.4:Oxides and Their Solutions and Mixtures, Macmillian Co., New York, pp. 214.
44. Bowden, F.P., and Tabor, D., 1964, The Friction and Lubrication of Solids, Clarendon Press, Oxford,
45. Savage, W.F., Aronson, A.H., and Krantz, B.M., March 1964, "A Literature Review of The Physical Metallurgy of Electric Resistance Welding ", Welding Research Supplement 140-s-144-s.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.182.179
論文開放下載的時間是 校外不公開

Your IP address is 18.117.182.179
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code