Responsive image
博碩士論文 etd-0719111-114801 詳細資訊
Title page for etd-0719111-114801
論文名稱
Title
以分子證據評估韋氏鹿蛾(鱗翅目:裳蛾科,燈蛾亞科,鹿蛾族)一個具高度變異物種之分類地位
Evaluation of the taxonomic status of Amata wilemani Rothschild, 1911 (Lepidoptera: Erebidae, Arctiinae, Syntomini), a highly variable species, using molecular sequence data
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-01
繳交日期
Date of Submission
2011-07-19
關鍵字
Keywords
生命條碼、生物種概念、隱蔽種、形態可塑性
barcoding, morphological plasticity, species concept, cryptic species
統計
Statistics
本論文已被瀏覽 5735 次,被下載 7
The thesis/dissertation has been browsed 5735 times, has been downloaded 7 times.
中文摘要
與性擇相關的形態性狀若具有高度的個體變異性則對合子形成前的機械性生殖隔離機制形成挑戰,且造成物種鑑定與分類的困擾。因此釐清性狀變異性與生物或非生物因子的關聯則有助於理解其在天擇壓力或性擇過程中所扮演的角色。鹿蛾是鱗翅目中少數在翅紋與生殖結構上同時具有高度個體變異性的類群。此現象雖早已被報導,然此現象之演化與分類學意義確從未被以現代方法所闡明。本研究藉著探索韋氏鹿蛾(Amata wilemani Rothschild, 1914) - 一種棲息於台灣中高海拔山區的高變異物種之分子親緣關係以檢驗數個與表型變異成因相關之假說。本研究以COI、EF1a以及28S三個基因片段重建韋氏鹿蛾各個色型與38種鹿蛾與2種苔蛾的親緣關係。無論在那一種資料分割策略下各色型的韋氏鹿蛾皆形成一個單系群,而蓬萊鹿蛾(A. formosensis)或其在中國的近似種可能為其姐妹群。單型網狀分析(haplotype network)結果亦顯示韋氏鹿蛾的不同單型差異甚小。由於各色型的出現與發生物候、地理分布、海拔梯度與生殖器形態皆無關聯,因此韋氏鹿蛾應被視為一個具高度形態變異的單一物種,而其高度的個體變異性則可能由種內競爭所驅動。本研究亦發現過去被處理為韋氏鹿蛾次同物異名的交力坪鹿蛾(A. karapinesis (Strand, 1915))應被恢復為有效種。此外本研究亦發現基於形態特徵及核酸序列所重建之鹿蛾屬級親緣關係並不吻合,顯示未來對此高多樣性類群進行全面性親緣關係研究之必要。
Abstract
The morphological phenotypic characters involving sexual selection but with highly individual variability are likely to challenge the prezygotic isolating mechanism driven by differentiation of mechanical structures. This kind of characters may also puzzle species identification and taxonomy. Therefore clarifying the correlation between the phenotypic variability and biological/non-biological factors becomes necessary in order to understand the role of this phenomenon under natural selection and sexual selection. The Syntomini represents one of the few lepidopterous groups that exhibit highly individual variability in both wing pattern and reproductive structures. The evolutionary and taxonomic significance of this phenomenon, however, has never been studied using modern methods although it has been documented for long. In order to test several hypotheses relevant to phenotypic variability, the present study focuses the phylogenetic relationship of Amata wilemani Rothschild, 1914, a subalpine moth species with extremely high variability in wing coloration and genitalia. The phylogenetic relationship between the three color morphs of A. wilemani and 38 Syntomini species plus 2 Lithosiinae outgroups was reconstructed using fragments of COI, EF1a and 28S. All color morphs of A. wilemani were recovered to form a monophyletic group under all data partitioning strategies with Amata formosensis (Wileman, 1928) or its closely related species in China as the potential sister group. The result of gene network analysis suggests low divergence between haplotypes of A. wilemani. Because no correlation between color morphs, phenology, geographical distribution, altitudinal gradient, and genitalic morphlogy was detected, it is concluded that A. wilemani should be regarded as a single species with high phenotypic variability, and this may suggest existence of intraspecific competition. The present study also found that Amata karapinensis (Strand, 1915), which was synonymized with A. wilemani by previous authors, should be revived. The incongruence between the phylogenetic relationships based on morphological and molecular characters shows a need of a comprehensive phylogenetic study of this highly diverse group.
目次 Table of Contents
內文目錄
一、前言 1
(一) 表型變異在天擇與性擇中所扮演的角色 1
(二) 生殖器形態的變異 2
(三) 如何以現代方法評估具形態高度變異物種的分類地位 3
(四) 我的標的分類群:鹿蛾 – 一群具有高度個體變異與生殖器不對稱性的生物 3
(五) 以韋氏鹿蛾(Amata wilemani Rothschild, 1911)做為研究案例 4
二、材料與方法 6
(一) 分類群取樣策略 6
(二) 系統分類分析策略 7
(三) 形態探討 9
三、結果 11
(一) 分子重建之親緣關係 11
(二) 序列距離評估 13
(三) 形態特徵分析 14
四、討論 17
(一) 韋氏鹿蛾的分類地位 17
(二) 韋氏鹿蛾生殖器型態的高度變異性 17
(三) 韋氏鹿蛾表型多樣性的生物意涵 18
(四) 屬間的親緣關係及單系性 18
(五) 形態特徵評估 20
五、結論 21
六、參考文獻 22

圖 次
圖1、包含在分析中所有物種之成蟲形態(苔蛾族及鹿蛾族標本) 28
圖2、(續)鹿蛾族標本 29
圖3、鹿蛾族雄性器 30
圖4、(續)鹿蛾族雄性器 31
圖5、(續)鹿蛾族雄性生殖器及韋氏鹿蛾生殖器變異 32
圖6、所有已檢視標本之翅紋與分布對照圖 33
圖7、貝氏分析及COI基因重建親緣關係(120樣本) 34
圖8、貝氏分析及EF1a基因重建親緣關係 35
圖9、貝氏分析及28S基因重建親緣關係 36
圖10、貝氏分析及COI+EF1a+28S重建基因親緣關係 37
圖11、韋氏鹿蛾與最近緣物種的單型網狀圖(haplotype network) 38
圖12、鹿蛾生殖器對稱性及抱器背衍生物特徵演化之推測 39
圖13、抱器頂端形態及背兜衍生物之特徵演化之推測 40
圖14、抱器端膜骨化小刺形態及後翅翅脈之特徵演化之推測 41
表 次
表1、本研究用於重建分子親緣關係樹之物種 42
表2、不同基因片段組合最適當的核苷酸替換的模組(Nucleotide substitution model)以及其相關數值 49
表3、各鹿蛾屬以及屬級歸屬有問題物種之間COI基因序列的差異 50
表4、鹿蛾Amata屬內個物種間COI基因序列的差異 51
表5、韋氏鹿蛾各樣本間COI基因序列的差異 52
附 錄
附錄1、已檢視之所有韋氏鹿蛾標本原始資訊 53

參考文獻 References
Arnqvist G, Rowe L. 2005. sexual conflict. Princeton: Princeton University Press.
Avise JC, Nelson WS, Sibley CG. 1994. DNA sequence support for a close phylogenetic relationship between some storks and New World vultures. Proceedings of the National Academy of Sciences of the United States of America 91(11): 5173-5177.
Baldauf SA, Bakker TCM, Kullmann H, Thunken T. 2011. Female nuptial coloration and its adaptive significance in a mutual mate choice system. Behavioral Ecology 22(3): 478-485.
Beccaloni GW, Scoble MJ, Robinson GS, Pitkin B. 2003. The Global Lepidoptera Names Index (LepIndex). World Wide Web electronic publication. http://www.nhm.ac.uk/entomology/lepindex [accessed 6 January 2007] *.
Brennan PLR, Clark CJ, Prum RO. 2010. Explosive eversion and functional morphology of the duck penis supports sexual conflict in waterfowl genitalia. Proc R Soc B-Biol Sci 277(1686): 1309-1314.
Burger M, Nentwig W, Kropf C. 2003. Complex genital structures indicate cryptic female choice in a haplogyne spider (Arachnida, Araneae, Oonopidae, Gamasomorphinae). Journal of Morphology 255(1): 80-93.
Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN. 2008. DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste, Costa Rica. Proceedings of the National Academy of Sciences of the United States of America 105(17): 6350-6355.
Canfield MR, Greene E, Moreau CS, Chen N, Pierce NE. 2008. Exploring phenotypic plasticity and biogeography in emerald moths: A phylogeny of the genus Nemoria (Lepidoptera: Geometridae). Molecular phylogenetics and evolution 49(2): 477-487.
Clark D, Roberts J, Rector M, Uetz G. 2011. Spectral reflectance and communication in the wolf spider, Schizocosa ocreata (Hentz): simultaneous crypsis and background contrast in visual signals. Behavioral Ecology and Sociobiology 65(6): 1237-1247.
Clement M, Posada D, Crandall K. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657 - 1660.
Cooper G, Miller PL, Holland PWH. 1996. Molecular genetic analysis of sperm competition in the damselfly Ischnura elegans (Vander Linden). Proceedings of the Royal Society of London Series B-Biological Sciences 263(1375): 1343-1349.
Cordero A, Santolamazzacarbone S, Utzeri C. 1995. Male disturbance, repeated insemination and sperm competition in the damselfly Coenagrion scitulum (Zygoptera: Coenagrionidae). Animal Behaviour 49(2): 437-449.
Couldridge VCK, Alexander GJ. 2002. Color patterns and species recognition in four closely related species of Lake Malawi cichlid. Behavioral Ecology 13(1): 59-64.
de Jong WW, Zweers A, Versteeg M, Dessauer HC, Goodman M. 1985. alpha-Crystallin A sequences of Alligator mississippiensis and the lizard Tupinambis teguixin: molecular evolution and reptilian phylogeny. Molecular Biology and Evolution 2(6): 484-493.
Dessauer HC, Fox W, Ramirez JR. 1957. Preliminary attempt to correlate paper-electrophoretic migration of hemoglobins with phylogeny in Amphibia and Reptilia. Archives of Biochemistry and Biophysics 71(1): 11-16.
Dobzhansky T. 1937. Genetics and the Origin of Species. New York: Columbia Univ. Press.
Ellers J, Boggs CL. 2003. The evolution of wing color: male mate choice opposes adaptive wing color divergence in Colias butterflies. Evolution 57(5): 1100-1106.
Endler J. 1983. Natural and sexual selection on color patterns in poeciliid fishes. Environmental Biology of Fishes 9(2): 173-190.
Estrada C, Jiggins C. 2002. Patterns of pollen feeding and habitat preference among Heliconius species. Ecological Entomology 27: 448 - 456.
Fincke OM. 1984. Sperm competition in the damselfly. Enallagma hageni Walsh (Odonata: Coenagrionidae): benefits of multiple mating to males and females. Behavioral Ecology and Sociobiology 14(3): 235-240.
Fordyce JA, Nice CC, Forister ML, Shapiro AM. 2002. The significance of wing pattern diversity in the Lycaenidae: mate discrimination by two recently diverged species. Journal of evolutionary biology 15(5): 871-879.
Fu CM, Tzuoo HR. 2004. Moths of Anmashan Part 2. Taichung: Taichung Nature Research Society.
Grant PR, Grant BR, Smith JN, Abbott IJ, Abbott LK. 1976. Darwin's finches: population variation and natural selection. Proceedings of the National Academy of Sciences 73(1): 257-261.
Gregoire A, McFarlane ML, Faivre B, Evans MR, Cherry MI. 2007. Patterns of morphological variation in two sexually dimorphic bird species with different tail shapes. Biological Journal of the Linnean Society 91(3): 437-443.
Hadley A. 2010. Combine ZP program, New version. http://www.hadleyweb.pwp.blueyonder.co.uk/CZP/News.htm.
Hebert PDN, Barrett RDH. 2005. Reply to the comment by L. Prendini on "Identifying spiders through DNA barcodes". Canadian Journal of Zoology-Revue Canadienne De Zoologie 83(3): 505-506.
Hebert PDN, Ratnasingham S, deWaard JR. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B-Biological Sciences 270: 96-99.
Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. 2004. Identification of birds through DNA barcodes. Plos Biology 2(10): 1657-1663.
Holloway JD. 1988. The Moths of Borneo. Part 6. Family Arctiidae, subfamilies Syntominae, Euchromiinae, Arctiinae; Noctuidae misplaced in Arctiinae(Camptoloma, Aganainae). Kuala Lumpur: The Malaysia Nature Society.
Holloway JD, Bradley JD, Carter DJ. 1987. CIE guides to insects of importance to man. 1. Lepidoptera. London: CAB International.
Hosken DJ, Stockley P. 2004. Sexual selection and genital evolution. TRENDS in Ecology and Evolution 19(2): 87-93.
Huelsenbeck J, Ronquist F. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754.
Inoue H. 1992. Lepidoptera of Taiwan. 1(2): 171.
Jordan K. 1896. On mechanical isolation and other problems. . Novitates Zoologicae 3: 426-525.
Jordan K. 1906. Der Gegensatz zwischen geographischer und nichtgeographischer Variation. Nature 74: 6-6.
Karl I, Geister T, Fischer K. 2009. Intraspecific variation in wing and pupal melanization in copper butterflies (Lepidoptera: Lycaenidae). Biological journal of the Linnean Society Linnean Society of London 98(2): 301-312.
Kitching IJ, Rawlin JE. 1999. The Noctuoidae. In: Lepidoptera: Moths and butterflies volume 2: Morphology, Physiology, and Development Handbuch der Zoologie/Handbook of Zoology IV (In Kristensen NP, ed). Berlin & New York:Walter de Gruyter GmbH & Co., 355-401.
Knuttel H, Fiedler K. 2001. Host-plant-derived variation in ultraviolet wing patterns influences mate selection by male butterflies. The Journal of Experimental Biology 204: 2447-2459.
Kotiaho J, Alatalo RV, Mappes J, Parri S, Rivero A. 1998. Male mating success and risk of predation in a wolf spider: a balance between sexual and natural selection? Journal of Animal Ecology 67(2): 287-291.
Kristensen NP. 1999. Skeleton and muscle: adults. In: Lepidoptera: Moths and butterflies volume 1: Evolution, Systematics, and Biogeography Handbuch der Zoologie/Handbook of Zoology IV (In Kristensen NP, ed). Berlin & New York:Walter de Gruyter GmbH & Co., 39-122.
Lu CC, Wu LW, Jiang GF, Deng HL, Wang LH, Yang PS, et al. 2009. Systematic status of Agehana elwesi f. cavaleriei based on morphological and molecular evidence. Zoological Studies 48(2): 270-279.
Mavarez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M. 2006. Speciation by hybridization in Heliconius butterflies. Nature 441(7095): 868-871.
Mayr E. 1942. Systematics and the origin of species, from the viewpoint of a zoologist. Cambridge: Harvard University.
McNaught MK, Owens IPF. 2002. Interspecific variation in plumage colour among birds: species recognition or light environment? Journal of evolutionary biology 15(4): 505-514.
Melo MC, Salazar C, Jiggins CD, Linares M. 2009. Assortative mating preferences among hybrids offers a route to hybrid speciation. Evolution 63(6): 1660-1665.
Mikkola K. 2007. The rise of eversion techniques in lepidopteran taxonomy (Insecta: Lepidoptera). SHILAP Revistta de Lepidopterologia 35(139): 335-345.
Mitter KT, Larsen TB, De Prins W, De Prins J, Collins S, Vande Weghe G, et al. 2011. The butterfly subfamily Pseudopontiinae is not monobasic: marked genetic diversity and morphology reveal three new species of Pseudopontia (Lepidoptera: Pieridae). Systematic Entomology 36(1): 139-163.
Mutanen M. 2005. Delimitation difficulties in species splits: a morphometric case study on the Euxoa tritici complex (Lepidoptera, Noctuidae). Systematic Entomology 30(4): 632-643.
Mutanen M. 2006. Genital variation in moths—evolutionary and systematic perspectives: Oulun yliopisto.
Mutanen M, Kaitala A. 2006. Genital variation in a dimorphic moth Selenia tetralunaria (Lepidoptera, Geometridae). Biological Journal of the Linnean Society 87(2): 297-307.
Mutanen M, Rytkonen S, Linden J, Sinkkonen J. 2007. Male genital variation in a moth Pammene luedersiana (Lepidoptera : Tortricidae). European Journal of Entomology 104(2): 259-265.
Nassig WA, Naumann S, Rougerie. R. 2010. Evidence for the existence of three species in the genus Archaeoattacus (Lepidoptera: Saturniidae). The Journal of Research on the Lepidoptera 43: 37-47.
Obraztsov NS. 1966. Die palaearktischen Amata-Arten (Lepidoptera, Ctenuchidae). Veroffentlichungen der Zoologischen Staatssammlung Munchen 10: 1-383.
Owada M. 2004. On the syntomine moth Syntomoides imaon (Leopdiotpera, Arctiidae) new to the Ryukyus and Taiwan. Tinea 18(2): 103-107.
Robinson GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernandez LM. 2010. HOSTS - A Database of the World's Lepidopteran Hostplants. London: Natural History Museum, http://www.nhm.ac.uk/hosts.
Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Rothschild. 1911. Novitates Zoologicae 18: 154.
Rubinoff D, Cameron S, Will K. 2006. A genomic perspective on the shortcomings of mitochondrial DNA for "barcoding" identification. Journal of Heredity 97(6): 581-594.
Seehausen O, van Alphen JJM. 1998. The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex). Behavioral Ecology and Sociobiology 42(1): 1-8.
Shapiro AM, Porter AH. 1989. The lock-and-key hypothesis: evolutionary and biosystematic interpretation of insect genitalia. Annual Review of Entomology 34: 231-245.
Sibley CG, Ahlquist JE. 1984. The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. Journal of Molecular Evolution 20(1): 2-15.
Sibley CG, Ahlquist JE. 1986. Reconstructing bird phylogeny by comparing DNA's. Scientific American 254(2): 82-92.
Sibley CG, Ahlquist JE. 1987. DNA hybridization evidence of hominid phylogeny: Results from an expanded data set. Journal of Molecular Evolution 26(1-2): 99-121.
Simmons RB, Scheffer SJ. 2004. Evidence of cryptic species within the pest Copitarsia decolora (Guenee) (Lepidoptera : Noctuidae). Annals of the Entomological Society of America 97(4): 675-680.
Smartt RA, Lemen C. 1980. Intrapopulation morphological variation as a predictor of feeding behavior in deermice. The American Naturalist 116: 891-894.
Smith MA, Fisher BL, Hebert PDN. 2005. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society B-Biological Sciences 360(1462): 1825-1834.
Stuart–Fox DM, Ord TJ. 2004. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proceedings of the Royal Society of London Series B: Biological Sciences 271(1554): 2249-2255.
Swofford DL. 2003. PAUP*4.0b10. phylogenetic analysis using parsimony. Sunderland, Massachusetts.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution (submitted).
Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2): 171-180.
Wiemers M, Fiedler K. 2007. Does the DNA barcoding gap exist? - a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4(1): 8.
Wiens JJ. 2006. Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics 39(1): 34-42.
Zahiri R, Kitching IJ, Lafontaine JD, Mutanen M, Kaila L, Holloway JD, et al. 2011. A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). Zoologica Scripta 40(2): 158-173.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.247.196
論文開放下載的時間是 校外不公開

Your IP address is 3.129.247.196
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code