Responsive image
博碩士論文 etd-0719111-135952 詳細資訊
Title page for etd-0719111-135952
論文名稱
Title
射頻前端異質晶片整合與使用磁耦合互連技術之研究
RF Front-End Heterogeneous Chip Integration and the Use of Magnetically Coupled Interconnection Techniques
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-27
繳交日期
Date of Submission
2011-07-19
關鍵字
Keywords
接收機、低雜訊放大器、磁共振、非接觸式、異質晶片
Magnetic Resonance, Receiver, Low Noise Amplifier, Heterogeneous Chip, Non-Contact
統計
Statistics
本論文已被瀏覽 5712 次,被下載 2776
The thesis/dissertation has been browsed 5712 times, has been downloaded 2776 times.
中文摘要
本論文第一部分首先利用鎊線技術將設計於IPD製程中的巴倫器與設計於CMOS製程中的射頻前端接收機進行整合設計。設計流程為分別對射頻前端接收機與變壓器形式巴倫器作設計,並對鎊線建立電磁模型,個別電路間形成共軛阻抗匹配以達到最大功率轉移及雜訊最佳化。而在射頻接收機前端電路因採用直接降頻架構,因此整合時將巴倫器置於差動式低雜訊放大器前端,並利用IPD製程之低損耗特性來降低巴倫器之植入損耗,藉以改善整體接收機的雜訊指數。第二部分採用上述兩種不同製程設計垂直耦合變壓器形式巴倫器,結構上則將一次測線圈設計於IPD製程中,二次測線圈則設計於CMOS製程中,並於二次測線圈後接一差動式低雜訊放大器。設計上亦利用IPD製程特性使得巴倫器的損耗較小,有利於與後級差動式低雜訊放大器整合時有較佳之雜訊指數。最後則介紹了利用磁共振方法所發展之非接觸式垂直耦合技術來進行訊號傳遞,並且實現於印刷電路板上。
Abstract
The first part of this thesis studies the wire-bonding technology for use in an integrated design of transformer balun and RF front-end receiver, which is realized by IPD and CMOS technology, respectively. In this part, the RF front-end receiver and the balun were designed separately, and the bondwire model was established based on electromagnetic simulation. For the maximum power transfer and optimal noise performance, the input impedance between the CMOS RF front-end receiver and the IPD balun was conjugate-matched. The IPD balun, placed in front of the differential LNA of a direct-conversion receiver, is designed using the IPD technology, thereby reducing the insertion loss, and subsequently improving the noise figure of the CMOS receiver. The second part of this thesis uses a vertically coupled transformer balun with a primary coil made by IPD technology and a secondary coil made by CMOS technology. This balun has a low-loss advantage when integrated with a posterior differential LNA. Finally, the magnetic resonance coupling for use in signal transmission is studied and experimented on a printed circuit board.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文章節規劃 5
第二章 射頻接收機架構與前端之寬頻低雜訊放大器 7
2.1 超外差接收機架構 7
2.1.1 鏡像訊號問題 8
2.1.2 中頻帶通濾波器與選擇性 9
2.2 直接降頻接收機架構 10
2.3 射頻接收機效能評估參數 14
2.4 寬頻低雜訊放大器電路架構 19
2.4.1 電阻並聯回授式架構 20
2.4.2 共閘極輸入式架構 22
第三章 CMOS與玻璃基板異質整合晶片設計 25
3.1 整合電路簡介與規劃 26
3.2 電路設計與架構 28
3.2.1 被動式巴倫器 30
3.2.2 利用雜訊抵銷機制之寬頻低雜訊放大器 36
3.2.3 被動式寬頻混波器 40
3.2.4 可變增益放大器 41
3.3 模擬與量測結果 44
第四章 使用非接觸式磁耦合互連之堆疊結構電路設計 51
4.1 非接觸式訊號傳遞簡介 51
4.1.1 電容式耦合 52
4.1.2 電感式耦合 54
4.2 異質晶片堆疊架構與電路設計 56
4.2.1 垂直耦合巴倫器設計 57
4.2.2 低雜訊放大器設計 59
4.3 模擬與晶片量測結果 61
4.4 利用磁共振方式實現非接觸式訊號傳遞 71
4.4.1 非諧振式磁耦合 71
4.4.2 利用磁共振磁耦合 72
4.4.3 利用磁共振磁耦合實現於有機基板 73
第五章 結論 82
參考文獻 84
參考文獻 References
[1] A. A. O. Tay, K. S. Yeo, and J. H. Wu, “The effect of wirebond geometry and die setting on wire sweep,” IEEE Trans. on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, vol. 18, no. 1, pp. 201-209, Feb. 1995.
[2] B. Chylak, and I. W. Qin, “Packaging challenges and solutions for multi-stack die applications,” in IEEE Int. Electronics Manufacturing Technology (IEMT) Symp.Dig., 2002.
[3] N. Koopman, G. Adema, and S. Nangalia, “Flip chip process development techniques using a modified laboratory aligner bonder,” in IEEE Int. Electronics Manufacturing Technology (IEMT) Symp. Dig., 1995, pp. 29-35.
[4] ITRI-TNO Workshop on 3D IC Technology, May 2011, available: http://e-pkg.itri.org.tw/memb/SeminarView.aspx?SeminarId=118.
[5] N. Miura, and T. Kuroda, “Inductive-coupling transceiver for 3D system integration,” in Proc. IEEE Int. Conf. on Integrated Circuit Design and Technology, 2007, pp. 1-4.
[6] Behzad Razavi, RF Microelectronics, Upper Saddle Piver, NJ: Prentice Hall PTR, 1998.
[7] A. A. Abidi, “Direct-Conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1399-1410, Dec. 1995.
[8] 張盛富、張嘉展,無線射頻通訊模組設計,全華圖書,2007。
[9] D. M. Pozar, Microwave and RF Wireless Systems, John Wiley & Sons, Inc., New York, 2001.
[10] B. Razavi et al., “A UWB CMOS transceiver,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2555-2562, Dec. 2005.
[11] C. Y. Cha, and S. G. Lee, “A low power, high gain LNA topology,” in Proc. IEEE Int. Micro. Millimeter Wave Technol. Conf., 2000, pp. 420-423.
[12] Y. S. Lin et al., “Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network,” IEEE Trans. on Microwave Theory and Techniques, vol. 58, no. 2, pp. 287-296, Feb. 2010.
[13] J. Kim, S. Hoyos, and J. Silva-Martinez, “Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback with Simultaneous Noise, Gain, and Bandwidth Optimization,” IEEE Trans. on Microwave Theory and Techniques, vol. 58, no. 9, pp. 2340-2351, Sep. 2010.
[14] 陳厚樺,應用於超寬頻射頻接收機之CMOS射頻晶片的研製,國立成功大學電機工程學系碩士論文,2007。
[15] A. Batra et al., “Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a,” IEEE P802.15 Working Group for Wireless Personal Area Networks, March 2004.
[16] K. Zoschke, et al., “Fabrication of application specific integrated passive devices using wafer level packaging technologies,” IEEE Trans. Microwave Theory Tech., vol. 30, pp. 359-368, Aug. 2007.
[17] 魏祖強,平面型變壓器為基礎之積體化被動元件設計與模型化研究,國立中山大學電機工程學系碩士論文,2008。
[18] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer-a new power-combining and impedance-transformation technique,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 316-331, Jan. 2002.
[19] R. C. Frye, G. Badakere, Y. Lin, and P. Chelvam, “A monolithic, compact balun/matching network for SiP applications,” in Proc. 13th IEEE Topical Meeting on Electrical Performance of Electronic Packaging, 2004, pp. 37-40.
[20] S. A. Mass, Noise in Linear and Nonlinear Circuits, Artech House, 2005.
[21] W. Zhuo et al., “A capacitor cross-coupled common-gate low noise amplifier,” IEEE Trans. Circuits Syst. II: Expr. Briefs, vol. 52, no. 12, pp. 875-879, Dec. 2005.
[22] X. Fan, H. Zhang, and E. Sánchez-Sinencio, “A noise reduction and linearity improvement technique for a differential cascode LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588-599, March 2008.
[23] A. Amer, E. Hegazi, and H. F. Ragaie, “A 90-nm wideband merged CMOS LNA and mixer exploiting noise cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 323-328, Feb. 2007.
[24] F. D. Flaviis, and S. A. Mass, “X-band doubly balanced resistive FET mixer with very low intermodulation,” IEEE Trans. Microwave Theory and Techniques, vol. 43, pp. 457-460, Feb. 1995.
[25] H. D. Lee, K. A. Lee, and S. Hong, “Wideband VGAs using a CMOS transconductor in triode region,” in Proc. 36th Eur. Microw. Conf., Sep. 2006, pp. 1449-1452.
[26] R. J. Baker, et al., CMOS circuit design, layout, and simulation, IEEE Press, New York, 1998.
[27] H. D. Lee, K. A. Lee, and S. Hong, “A wideband CMOS variable gain amplifier with an exponential gain control,” IEEE Trans. Microwave Theory and Techniques, vol. 55, no. 6, pp. 1363-1373, June 2007.
[28] B. Park, K. Lee, D. Choi, and S. Hong, “A 3.1 – 10.6 GHz RF receiver front- end in 0.18μm CMOS for ultra-wideband applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2010, pp. 1616-1619.
[29] H. Zheng et al., “A 3.1 GHz – 8.0 GHz single-chip transceiver for MB-OFDM UWB in 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 414-426, Feb. 2009.
[30] G. Wang, W. Liu, M. Sivaprakasam, and G. A. Kendir, “Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 52, no. 10, Oct. 2005.
[31] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. on Industrial Electronics, vol. 51, no. 1, pp. 140-147, Feb. 2004.
[32] B. Moore et al., “Non-contact testing for SoC and RCP(SIPs) at advanced nodes,” in Proc. IEEE Int. Test Conf., 2008, pp. 1-10.
[33] R. Canegallo et al., “3D capacitive interconnections for high speed interchip communication,” in Proc. IEEE Custom Integrated Circuits Conf., 2007, pp. 1-8.
[34] S. Mick, L. Luo, J. Wilson, and P. Franzon, “Buried bump and AC coupled interconnection technology,” in Proc. IEEE Custom Integrated Circuits Conf., vol. 27, no. 1, Feb. 2004, pp. 121-125.
[35] A. Fazzi, et al., “3D capacitive interconnections with Mono- and Bi- directional capabilities,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 356-357.
[36] A. Majumdar, J. E. Cunningham, and A. V. Krishnamoorthy, “Alignment and performance considerations for capacitive, inductive, and optical proximity communication,” IEEE Trans. on Advanced Packaging, vol. 33, no. 3, pp. 690-701, Aug. 2010.
[37] S. K. Kim, and B. S. Kim, “Scalable modeling of spiral inductor in 0.13μm RF CMOS process,” in Proc. IEEE Int. SoC Design Conf., 2008, pp. I-437–I-439.
[38] B. Guru, and H. Hiziroğlu, Electromagnetic field theory fundamentals 2nd ed., Cambridge, 2004.
[39] N. Miura, D. Mizoguchi, T. Sakurai, and T. Kuroda, “Analysis and design of inductive coupling and transceiver circuit for inductive inter-chip wireless superconnect,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 829-837, April 2005.
[40] C. C. Lim et al., “Equivalent circuit model of a stacked inductor for high-Q on-chip RF applications,” IEE Proceedings-Circuits, Devices and Systems, vol. 153, no. 6, pp. 525-532, March 2006.
[41] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[42] H. K. Chen, D. C. Chang, Y. Z. Juang, and S. S. Lu, “A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive-peaking techniques,” IEEE Microwave and Wireless Components Letters, vol.17, no. 8, pp. 616-618, Aug. 2007.
[43] S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346-355, March 2000.
[44] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6 GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, 2004.
[45] C.-F. Liao and S.-I. Liu, “A broadband noise-canceling CMOS LNA for 3.1–10.6 GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329–339, 2007.
[46] K.-H. Chen, J.-H. Lu, B.-J. Chena, and S.-I. Liu, “An ultra-wide-band 0.4–10 GHz LNA in 0.18-μm CMOS,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 54, no. 3, pp. 217–221, 2007.
[47] F. Z. Shen, W. Z. Cui, W. Ma, J. T. Huangfu, and L. X. Ran, “Circuit analysis of wireless power transfer by “coupled magnetic resonance”,” in IET Int. Communication Conf. on Wireless Mobile and Computing, 2009, pp. 602-605.
[48] J. O. Mur-Miranda et al., “Wireless power transfer using weakly coupled magnetostatic resonators,” IEEE Energy Conversion Congress and Exposition, pp. 4179-4186, 2010.
[49] Sangwook Han, and D. D. Wentzloff, “Performance improvement of resonant inductive coupling for wireless 3D IC interconnect,” in Proc. IEEE Antennas and Propagation Society Int. Symp., 2010, pp. 1-4.
[50] W. R. Eisenstadt, B. Stengel, and B. M. Thompson, Microwave differential circuit design using mixed-mode S-parameters, Boston, MA: Artech House, 2006.
[51] T. Imura, H. Okabe, T. Uchida, and Y. Hori, “Study on open and short end helical antennas with capacitor in series of wireless power transfer using magnetic resonant couplings,” IEEE Industrial Electronics, pp. 3848-3853, Nov. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code