Responsive image
博碩士論文 etd-0719111-224446 詳細資訊
Title page for etd-0719111-224446
論文名稱
Title
一種改良式基因演算法以設計寬頻蘑菇型電磁能隙結構
An Improved Genetic Algorithm for Designing Broadband Mushroom-Type EBG Structures
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-18
繳交日期
Date of Submission
2011-07-19
關鍵字
Keywords
時域有限差分法、蘑菇型電磁能隙結構、基因演算法
Genetic Algorithm, Finite-Difference Time-Domain, Mushroom-Type EBG Structure
統計
Statistics
本論文已被瀏覽 5643 次,被下載 0
The thesis/dissertation has been browsed 5643 times, has been downloaded 0 times.
中文摘要
基因演算法(GAs)是一種全域的最佳化方法,配合適當的適應函數做評估,即可以應用在大部分的最佳化問題,然而其缺點是收斂速度較慢,在本論文中,吾人提出一種改良式基因演算法以提升其搜尋全域最佳解的效率,此方法的概念是以較少的代價,在初始族群中獲得適應能力較佳的物種,而將基因演算法的演化流程分為兩個階段,並且搭配基因演化的概念,以達到效率的提升。
吾人將應用改良式基因演算法最佳化蘑菇型電磁能隙(EBG)結構,配合時域有限差分法(FDTD),透過調整其過孔結構於金屬片的位置再搭配不同尺寸的金屬片進行串接,而不用改變其過孔結構的尺寸,來獲得寬頻的禁止頻帶,並比較模擬與量測之結果。此外將提出一種新的步驟,可以有系統地設計縮小化寬頻蘑菇型EBG結構。
Abstract
Genetic algorithms (GAs) are global optimization methods that can be applied to almost all problems, requiring only proper fitness function to evaluate. However, one problem of general GA is slow convergence. An improved GA is presented to speed up the efficiency of searching for global optimum in this author. The concept of this proposed method uses a few cost to obtain better individuals in initial population, and the evolution of GA is divided into two-stage with the concept of the genetic evolution process, which uses to improve efficiency.
An improved GA with finite-difference time-domain (FDTD) will be applied to optimize mushroom-type EBG structures, which can obtain a wide range stop-band by adjusting the position of via with different patch size cascaded without changing via size, then the simulation and measurement results are also compared. In addition, the novel steps will be presented to design broadband mushroom-type EBG structures with smaller size systematically.
目次 Table of Contents
目 錄
論文審定書.....................................................................................................................i
致謝................................................................................................................................ii
中文摘要.......................................................................................................................iii
英文摘要.......................................................................................................................iv
第一章 序論
1.1 研究動機與方法..........................................................................................1
1.2 論文大綱......................................................................................................2
第二章 基因演算法
2.1 基因演算法介紹與流程..............................................................................4
2.2 應用基因演算法最佳化PIFA天線…......................................................10
2.3 菁英策略.....................................................................................................15
第三章 基因演算法的改良
3.1 測試函數簡介.............................................................................................18
3.2 使用好的猜測與二次基因演算法….........................................................19
3.2.1 使用好的猜測加入基因演算法…............................................19
3.2.2 二次基因演算法........................................................................22
3.3 交配率與突變率….....................................................................................26
3.3.1 比較不同的交配率與突變率…................................................26
3.3.2 使用由高到低的交配率與高突變率…....................................30
3.4 改良式基因演算法.....................................................................................33
3.5 改良式基因演算法與文獻之方法比較.....................................................37
第四章 蘑菇型電磁能隙結構
4.1 簡介.............................................................................................................40
4.2 蘑菇型EBG結構參數對於禁止頻帶的影響...........................................41
第五章 應用改良式基因演算法最佳化蘑菇型EBG結構
5.1 相同尺寸的設計.........................................................................................48
5.2 縮減尺寸的設計.........................................................................................54
5.3 一種新的步驟以設計寬頻蘑菇型EBG結構...........................................58
第六章 結論............................................................................................................65
參考文獻......................................................................................................................66
參考文獻 References
[1] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor, MI: Univ. Michigan Press, 1975.

[2] J. M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in engineering electromagnetics,” IEEE Antennas Propag. Mag., Vol. 39, Issue.4, pp.7–21, Aug. 1997.

[3] R. Abhari and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microw. Theory Tech., Vol. 51, Issue.6, pp.1629–1639, Jun. 2003.

[4] J. Choi, V. Govind, and M. Swaminathan, “A novel electromagnetic bandgap (EBG) structure for mixed-signal system applications,” in IEEE Proc. Radio Wireless Conf., pp.243–246, Sept. 2004.

[5] T. Kamgaing and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microw. and Wireless Compon. Lett., Vol. 13, Issue.1, pp.21–23, Jan. 2003.

[6] T. L. Wu, , C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang, “A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits,” IEEE Microw. and Wireless Compon. Lett., Vol. 15, Issue.3, pp.174–176, Mar. 2005.

[7] M. F. Rad and L. Shafai, “Enhanced performance of a microstrip patch antenna using a high impedance EBG structure,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol. 3, pp.982–985, Jun. 2003.

[8] F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Ant. Prop., Vol. 51, pp.2939–2949, 2003.

[9] H. W. Yuan, S. X. Gong, X. Wang, and W. T. Wang, “Scattering analysis of a printed dipole antenna using PBG structures,” Progress In Electromagnetics Research B, Vol. 1, Issue.1, pp.189-195, 2008.

[10] S. M. Moghadasi, A. R. Attari, and M. M. Mirsalehi, “Compact and wideband 1-d mushroom-like EBG filters,” Progress In Electromagnetics Research, Vol. 83, pp.323-333, 2008.

[11] L. Inclan-Sanchez, J. L. Vázquez-Roy, E. Rajo-Iglesias and E. Garcia Munoz , “Compact EBG Surface based on Capacitively Loaded Loop Resonators with Grounded Vias,“in Proc. Antennas and Propagation, European Conference on 2007, pp.225-228, Vol.1, Nov 2007.

[12] D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch,
“High-impedance frequency selective surface with forbidden frequency band,” IEEE Trans. Microw. Theory Tech.,Vol. 47, pp.2059-2074, Nov.1999.

[13] F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave-circuits,” IEEE Trans. Microw. Theory Tech., Vol.47, pp.1509-1514, Nov.1999.

[14] L. Yang, M. Y. Fan, F. L. Chen, J. Z. She and Z. H. Feng , “A novel compact electromagnetic-bandgap (EBG) structure and its application for microwave circuits,” IEEE Trans. Microwave Theory Tech.,Vol.53, pp.183-189, Jan. 2005.

[15] T. H. Kim, M. Swaminathan, A. E. Engin, and B. J. Yang, “Electromagnetic band gap synthesis using genetic algorithms for mixed signal applications,” IEEE Trans. Adv. Packag., Vol. 32, Issue.1, pp.13~25, Feb. 2009.

[16] C. I. Tsitouri, S. C. Panagiotou, T. D. Dimousios, and C. N. Capsalis, “Optimizing a PIFA using the genetic algorithms technique for ultra wideband communications applications,” Proc. Antennas and Propagation European Conference on 2009, pp.3411~3413, Mar. 2009.

[17] Y. Ge and K.P. Esselle, “GA/FDTD technique for the design and optimization of periodic metamaterials,” IET Microw. Antennas Propag.,Vol. 1, Issue.1, pp.158–164, Feb. 2007.

[18] P. Kovacs and Z. Raida, “Global evolutionary algorithms in the design of electromagnetic band gap structures with suppressed surface waves propagation,” Radioengineering, Vol. 19, Issue.1, pp.122–128, Apr. 2010.

[19] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antenna Propag., Vol. 14, Issue.3, pp.300-307, May 1966.

[20] P. Pinho, J. F. Rocha Pereira, “Design of a PIFA antenna using FDTD and genetic algorithms,“ in Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol.4, pp.700 -703, 2001.

[21] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, Second Edition, A John Wiley & Sons, Inc., 2004.

[22] B. A. Julstrom, “Seeding the population: improved performance in a genetic algorithm for the rectilinear steiner problem,“ in Proc. ACM symp. Applied computing, Mar. 1994.

[23] T. R. Newman , R. Rajbanshi , A. M. Wyglinski , J. B. Evans , and G. J. Minden, “Population adaptation for genetic algorithm-based cognitive radios,“ Mobile Networks and Applications, Vol.13, Issue.5, pp.442-451, Oct. 2008.

[24] B. Li, T. S. Lin, L. Liao, and C. Fan , “Genetic algorithm based on multipopulation competitive coevolution,“ IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), pp.225-228, Jun. 2008.

[25] L. Liang, C. H. Liang, L. Chen, and X. Chen, “A novel broadband EBG using cascaded mushroom-like structure,” Microwave Opt. Technol. Lett., Vol. 50, Issue. 8, pp.2167-2170, Aug. 2008.

[26] L. J. Zhang, C. H. Liang, L. Liang, and L. Chen, “A novel design approach for dual-band electromagnetic band-gap structure,” Progress In Electromagnetics Research M, Vol. 4, pp.81-91, 2008.

[27] E. Rajo-Iglesias, L. Inclan-Sanchez, J. L. Vazquez-Roy and E. Garcia-Muoz, “Size Reduction of Mushroom-Type EBG Surfaces by Using Edge-Located Vias,” IEEE Microw. and Wireless Compon. Lett., Vol. 17, Issue. 9, pp.670-672, Sept. 2007.

[28] L. Liang, C. h. Liang, X. W. Zhao, Z. Su, “A novel broadband EBG using multi-period mushroom-like structure,” ICMMT Proceedings, Vol. 4, pp. 1609-1612, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.133.228
論文開放下載的時間是 校外不公開

Your IP address is 18.119.133.228
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code