Responsive image
博碩士論文 etd-0719111-225354 詳細資訊
Title page for etd-0719111-225354
論文名稱
Title
一種無條件穩定WLP-FDTD法用來有效處理細小結構之研究
An Efficient WLP-FDTD Scheme with Unconditional Stability for Thin Structures
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-18
繳交日期
Date of Submission
2011-07-19
關鍵字
Keywords
時域有限差分法、WLP演算法、無條件穩定
Weighted Laguerre Polynomials(WLP) Method, Unconditional Stability, Finite-Difference Time-Domain
統計
Statistics
本論文已被瀏覽 5687 次,被下載 0
The thesis/dissertation has been browsed 5687 times, has been downloaded 0 times.
中文摘要
當我們要解決電磁問題時, 時域有限差分法(Finite-Difference Time Domain, FDTD)是一種非常有效率的數值模擬方法用來解決諸類問題。然而傳統的FDTD法是屬於Explicit型式的差分方程式,因此它會被Courant-Friedrich-Levy(CFL)穩定準則給限制住,也就是最小的空間網格將限制住最大的時間步階。因此若要模擬細小結構時,相對所產生的最大時間步階將使的模擬時間大幅上揚。

Weighted Laguerre Polynomials(WLP-FDTD)法利用WLP法與FDTD法做結合,使WLP-FDTD成為Implicit型式的差分方程式,也因此它可以完全的跳脫CFL穩定準則的限制,進而選擇任意的時間步階來改善整個模擬時間。本論文中我們將非均勻網格法與WLP-FDTD做結合使用,用它來模擬細小結構上將可以使模擬時間減少和降低記憶體的使用,進一步的我們再將此法從二維擴展到三維並加入有損材質於原本公式中,使得這個方法的應用更為廣泛。
Abstract
When we want to solve electromagnetic problems, the Finite Difference Time Domain (FDTD) method is a very useful numerical simulation technique to solve these problems. However, the traditional FDTD method is an explicit finite-difference scheme, so the method is limited by the Courant-Friedrich-Levy (CFL) stability condition. In other words, the minimum cell size will limit the maximum time-step size in a computational domain. Therefore, while simulating structures of fine scale dimensions, it will relatively result in a prohibitively high computation time generated by the maximum time-step size.

The WLP-FDTD is based on the Weighted Laguerre Polynomials technique and the traditional FDTD algorithm. It is an implicit finite-difference equations. Therefore, it can completely avoid the stability constraint, and then improve calculation time by choosing relatively large time-step. In this thesis, we incorporate non-uniform grid method into the WLP-FDTD. By using them to simulate the structures of fine scale dimensions can reduce the computation time and memory usage. Further, we extend this method from two-dimensional to three-dimensional and add loss media into original formulations that will make the application of this method more widely.
目次 Table of Contents
論文審定書………………………………………………………………………………………………………………i
誌謝…………………………………………………………………………………………………………………………ii
中文摘要………………………………………………………….…..………………………………………………...iii
英文摘要………………………………………..…………………….………………………………………………...iv
第一章 序論………………………………………………………………………………………………………….1
1.1 研究背景. ..……..…………………………………………………………………………………………1
1.2 論文大綱..……………..………………………………………………………………………………....2
第二章 FDTD演算法……………………………………………………………………………………………3
2.1 馬克斯威爾方程式………………...……..………..………………………………………………….3
2.2 三維方程式.……………………………….…..………………………………….……………………….3
2.3 二維方程式…………………………………………………………………………………….….…..…..6
2.3.1 TMz模態之中央差分法與網格配置…………………………………………........8
2.4 Courant穩定準則…………………………………………………………………………….……….....8
2.5 激發源……………………………………………………………………………………………….….…....9
2.5.1 取代源…………………………………………………………………………………………..….9
2.5.2 附加源………………………………………………………………………………………..…….9
2.5.3 阻抗性電壓源……………………………………………………………………………..….10
2.6 吸收邊界條件…………………………………………………………………………………….……..10
2.6.1 Mur一階吸收邊界條件……………………………………………………………..…...11
2.7 非均勻網格之時域有限差分法………………………………………………………….…….12
2.7.1 理論…………………………………………………………………………………………..…...12
第三章 WLP-FDTD演算法………………………………………………………………………………16
3.1 緣由與目的……………………………………………………..……………………………………..…16
3.2 Explicit法和Implicit WLP-FDTD法…………………………................................17
3.2.1 Explicit方法……………………………………………………..…………………………….17
3.2.2 Implicit WLP-FDTD方法………………………………..……………………………..20
3.3 二維TM模態之WLP-FDTD…………………………………….............................…23
3.3.1 TM模態公式與DBC吸收邊界之推導……………………..…………………….24
3.3.2 Uniform二維TM wave free space之模擬………..………………………………30
3.4 二維TE模態之Non-Uniform WLP-FDTD………............................………….32
3.4.1 Non-Uniform二維TE之模擬…………………………………..……………………. 34
第四章 三維 Non-Uniform WLP之應用………………………………………………………….. 42
4.1 Non-Uniform 3D WLP公式……………………………………………………………………..42
4.2 模擬結果………………………………………………………….………………………………….….47
4.3 結合有損介質於WLP法中……………………………………………….………............. 55
4.3.1 三維WLP法於有損介質之公式修正………………………..……………………. 55
4.3.2 模擬結果…………………………………………………………………..……………………...57
4.4 隱式WLP法與ADI法之比較……………………………………….………................ 60
4.4.1 模擬結果比較…………………………………………………………..……………………...60
第五章 低CPU需求之改良式WLP法………………….………………………………………….61
5.1 修正運作基底函數之方法……………………………………………………………………...61
5.2 修正WLP方法之缺點………………………….………............................................65
5.3 修正2D TE 模態之WLP方法………………………….………...............................68
第六章 結論………………………………………………………………………………………………………..77
參考文獻………………………………………………………………………………………………………………..78
參考文獻 References
[1] K. S. Yee, "Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, May 1966.
[2] K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics. Boca Raton: CRC Press, 1993.
[3] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd ed. Boston, MA: Artech House, 2005.
[4] A. Taflove, Computational Electrodynamics The Finite-Difference Time-Domain Method, 1995.
[5] Y. S. Chung, T. K. Sarkar, B. H. Jung, and M. S. Palma, “An unconditionally stable scheme for the finite-difference time-domain method,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 697–704, Mar. 2003.
[6] Navarro, E. A., N. T. Sangary, and J. Litva, “Some considerations on the accuracy of the nonuniform FDTD method and its application to waveguide analysis when combined with the perfectly matched layer technique,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1115-1124, July 1996.
[7] Shao, W., B.-Z. Wang, X.-H. Wang, and X.-F. Liu, “Efficient compact 2-D time-domain method with weighted Laguerre polynomials,” IEEE Trans. Electromagn. Compat., Vol. 48, No. 3,442–448, Aug. 2006.
[8] D. M. Sheen , S. M. Ali , M. D. Abouzahra and J. A. Kong ,“Application of the three-dimensional finite-difference time-domain method to the analysis of plannar microstrip circuits ,” IEEE Trans. Microwave Theory Tech. , vol. 38 , pp. 849-857 , July 1990.
[9] An Ping Zhao, Raisanen, A.V., Cvetkovic, S.R.,” A fast and efficient FDTD algorithm for the analysis of planar microstrip discontinuities by using a simple source excitation scheme,” Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters] , Volume: 5 , Issue: 10 , Oct.
[10] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” Electromagnetic Compatibility, IEEE Transactions on Volume: 23 ,pp. 377 –382,Nov 1981.
[11] M. Necati Őzişik, Finite Difference Methods in Heat Transfer, 1994.
[12] A. D. Poularikas, The Transforms and Applications Handbook. Piscataway, NJ: IEEE Press, 1996
[13] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. New York: Academic, 1980.
[14] Z. Bi, K.Wu, C.Wu, and J. Litva, “A dispersive boundary condition for microstrip component analysis using the FD-TD method,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 774–777, Apr. 1992
[15] K. Srinivasan, P.Yadav, E. Engin, and M. Swaminathan, “Choosing the right number of basis functions in multiscale transient simulation using Laguerre polynomials,” in Electr. Performance Electron. Packag., Oct. 2007, pp. 291–294.
[16] R. Holland, “ Implicit three-dimensional finite differencing of Maxwell’s equations,” IEEE Trans. Nucl. Sci., vol. NS-31, pp. 1322-1326, 1984.
[17] T. Namiki, “A new FDTD algorithm based on alternating direction implicit method,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2003–2007,Oct.1999.
[18] 林明村 , 時域有限差分法之非均勻網格分析與應用 , 中山大學碩士論文 , 2000.
[19] S. G. García, T.-W. Lee, and S. C. Hagness, “On the accuracy of the ADI-FDTD method,” IEEE Antennas Wireless Propag. Lett., vol. 1, no.1, pp. 31–34, Jan. 2002.
[20] A. P. Zhao, “Analysis of the numerical dispersion of the 2-D alternating- direction implicit FDTD method,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1156–1164, Apr. 2002.
[21] K. Srinivasan, M. Swaminathan, and E. Engin, ”Enhancement of Laguerre- FDTD with Initial Conditions for Fast Transient EM/Circuit Simulation,” Electronic Components and Technology Conference 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.79.70
論文開放下載的時間是 校外不公開

Your IP address is 3.133.79.70
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code