Responsive image
博碩士論文 etd-0719112-123238 詳細資訊
Title page for etd-0719112-123238
論文名稱
Title
發光二極體封裝之雷射共晶固晶製程
Laser Soldered Eutectic Die-Bonding Processes in the LED Packaging
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-28
繳交日期
Date of Submission
2012-07-19
關鍵字
Keywords
固晶、共晶、雷射、熱應力、殘留應力
Die Bonding, Eutectic, Laser, Thermal Stress, Residual Stress
統計
Statistics
本論文已被瀏覽 5842 次,被下載 388
The thesis/dissertation has been browsed 5842 times, has been downloaded 388 times.
中文摘要
本文主要在探討由雷射功率控制於共晶固晶製程中,對固晶之效益及固晶過程中對各其他元件材料的溫度與應力影響。文中之雷射固晶製程係用波長940nm的連續式二極體雷射,經由透鏡聚焦局部加熱氮化鋁基板背面一段時間,藉熱傳導將熱能傳至附著於基板另一面之晶粒與錫金層,使其介面間之錫金共晶焊料超過共晶點溫度,焊接磊晶晶粒於基板上。文中利用有限元素套裝軟體MSC. Marc中之熱-彈-塑模式,配合隨溫度變化之材料特性,進行整個雷射加熱之模擬工作。文中並配合實驗結果透過逆算工程修正有限元素模式中部份參數,如:氮化鋁對此波長雷射之吸收率、氮化鋁熱傳導係數、比熱及自然對流係數,以確保在溫度方面之數值結果與實驗量測差異維持於10%以內。文中首先控制雷射功率使基板令面之錫金合金層溫度介於300 ~325 間,並分析雷射加熱過程中,組件之溫度分布與熱應力變化;同時探討冷卻後各焊面間之殘留應力分布。研究中亦探討了雷射位置偏移、聚焦、離焦、雷射入射基板角度,以及雙束雷射對製程之可能影響。極盼此研究結果有助於國內高功率磊晶固晶製程之建立。
Abstract
The effect of laser power pattern on the temperature and thermal stress distributions in LED die bonding process is investigated in this work. The wavelength of 940nm diode laser source is used in this study. The laser light is focus on the back of an AlN substrate. The eutectic Au80Sn20 solder metallized between die and substrate is soldered by the heat conducted from the controlled laser power. The finite element package software-MSC. Marc is employed to simulate the laser soldering process. The thermal-elastic-plastic models of the solid elements are used. The temperature dependent material properties are applied to characterize the temperature variation effect during the die bonding. The measured temperature data have also been used to derive the absorption coefficient, conductivity, specific heat of AlN substrate and the convection coefficient in free convection via the inverse engineering process. A difference between the simulated and measured temperature can be kept in 10%. The temperature and thermal stress distributions during the die bonding process have been simulated and studied. The distributions of residual stress induced in this die bonding process have also been studied. The effects of different laser soldering parameters, e.g. focus shift, defocus, inclined angle, on the die bonding are also studied.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xiii
符號說明 xiv
第一章 緒論 1
1.1前言 1
1.2 研究動機 5
1.3 文獻回顧 6
1.4 組織章節 9
第二章 研究理論與方法 10
2.1逆算工程 10
2.2實驗設置 13
2.3熱傳分析理論 21
2.4應力分析理論 22
2.5 牛頓-拉弗森法(Newton-Raphson Method) 24
第三章 有限元素模型建立 28
3.1 幾何外觀與接觸設定 28
3.2 初始狀態與邊界條件 33
3.2.1自然熱對流與雷射熱源 33
3.2.2 位移拘束條件 37
3.3 網格切割與斂散性分析 41
3.4 材料參數與熱對流係數 53
3.4.1 材料模型與參數 53
3.4.2 敏感度分析 57
3.4.3 目標搜尋 64
3.5 模型驗證 69
第四章 數值結果與討論 73
4.1 製程參數介紹與各材料狀況 73
4.1.1 基板與接合墊 77
4.1.2 錫金共晶合金 82
4.1.3 磊晶層 87
4.1.4 襯底 90
4.2 雷射參數 97
4.2.1 雷射位置偏移 97
4.2.2 聚焦與離焦 103
4.2.3 雷射傾角 107
4.2.4 雙束雷射間距 111
4.3 吸嘴參數 114
4.3.1 等效吸嘴長度 114
4.3.2 吸取壓力 117
4.3.3 下壓負重 122
4.4 基板參數 124
4.4.1 基板長寬 124
4.4.2 薄化基板 127
4.4.3 溝槽深度 131
第五章 結論與未來工作 135
5.1 結論 135
5.2 未來工作 136
參考文獻 137
參考文獻 References
[1] http://www.alibaba.com/product-gs/470561173/HIGH_POWER_LED.html, 2012.
[2] http://www.ledinside.com.tw/b2b/product/view/1456, 2012.
[3] Arik, M., Petroski, J., and Weaver, S., “Thermal Challenges in the Future Generation Solid State Lighting Applications: Light Emitting Diodes,” Inter Society Conference on Thermal Phenomena, pp.113-120, 2002.
[4] Tsou, C. F. and Huang, Y. S., “Silicon-Based Packaging Platform for Light-Emitting Diode,” IEEE Transactions on Advanced Packaging, 29(3), pp.607-614, 2006.
[5] Lan, K., Woong, J. H., and Moo, W. S., “Thermal Resistance Analysis of High Power LEDs with Multi-chip Package,” Electronic Components and Technology Conference, pp.1076-1081, 2006.
[6] Jeung, W. K., Shin, S. H., Hong, S. Y., Choi, S. M., Yi, S., Yoon, Y. B., Kim, H. J., Lee, S. J., and Park, K. Y., “Silicon-Based, Multi-Chip LED Package,” Electronic Components and Technology Conference, pp.722-727, 2007.
[7] Christensen, A. and Graham, S., “Thermal Effects in Packaging High Power Light Emitting Diode Arrays,” Applied Thermal Engineering, 29(2-3), pp.364-371, 2009.
[8] Yin, L. Q., Yang, W. Q., Guo, Y. S., Ma, K., Li, S. Z., Chen, M. F., Li, J., and Zhang, J. H., “Multi-Chip Integrated High-Power White LED Device on the Multi-Layer Ceramic Substrate,” Electronic Components and Technology Conference, pp.790-794, 2008.
[9] Yung, K. C., Liem, H., Choy, H. S., and Lun, W. K., “Thermal Performance of High Brightness LED Array Package on PCB,” International Communications in Heat and Mass Transfer, 37(9), pp.1266-1272, 2010.
[10] Jeng, M. J., Chiang, K. L., Chang, H. Y., Yen, C. Y., Lin, C. C., Chang, Y. H., Lai, M. J., Lee, Y. L., and Chang, L. B., “Heat Sink Performances of GaN/InGaN Flip-chip Light-emitting Diodes Fabricated on Silicon and AlN Submounts,” Microelectronics Reliability, 52(5), pp.884-888, 2012.
[11] Wang, S. J., Uang, K. M., Chen, S. L., Yang, Y. C., and Chang, S. C., “Use of Patterned Laser Liftoff Process and Electroplating Nickel Layer for the Fabrication of Vertical-structured GaN-based Light-emitting Diodes,” Applied Physics Letters, 87(1), pp.011111-011111-2, 2005.
[12] Chu, C. F., Lai, F. I., Chu, J. T., Yu, C. C., Lin, C. F., Kuo, H. C., and Wang, S. C., “Study of GaN light-emitting Diodes Fabricated by Laser Lift-off Technique,” American Institute of Physics, 95(8), pp.3916-3922, 2004.
[13] Chou, T. L., Huang, C. F., Han, C. N., Yang, S. Y., and Chiang, K. N., “Fabrication Process Simulation and Reliability Improvement of High-brightness LEDs,” Microelectronics Reliability, 49(9-11), pp.1244-1249, 2009.
[14] Suganuma, K., Sakamoto, S., Kagami, N., Wakuda, D., Kim, K. -S., and Nogi, M., “Low-temperature Low-pressure Die Attach with Hybrid Silver Particle Paste,” Microelectronics Reliability, 52(2), pp.375-380, 2012.
[15] Yang, Y. C., Sheu, J. K., Lee, M. L., Hsu, C. K., Tu, S. J., Liu, S. Y., Yang, C. C., and Huang, F. W., “Vertical InGaN light-emitting diodes with Ag paste as bonding layer,” Microelectronics Reliability, 52(5), pp.949-951, 2012.
[16] Matijasevic, G. and Lee, C. C., “Void-Free Au–Sn Eutectic Bonding of GaAs Dice and Its Characterization Using Scanning Acoustic Microscopy,” Journal of Electronic Material, 18(2), pp.327–337, 1989.
[17] Lee, C. H., Tai, K. L., Bacon, D. D., Doherty, C., Katz, A., Wong, Y. M., Lane, E., “Bonding of InP Laser Diodes by Au-Sn Solder and Tungsten-Based Barrier Metallization Schemes,” Semiconductor Science Technology, 9(4), pp.379-386, 1994.
[18] Nishiguchi, M., Goto, N., and Mishizawa, H., “Highly Reliable Au-Sn Bonding with Background GaAs LSI Chips,” Ninth IEEE/CHMT International Conference, pp.216-222, 1990.
[19] Lee, C. C., Wang, C. Y., and Matijasevic, G. S., “A New Bonding Technology Using Gold and Tin Multilayer Composite Structures,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 14(2), pp.407-412, 1991.
[20] Dohle, G. R., Callahan, J. J., Martin, K. P., and Drabik, T. J., “Low Temperature Bonding of Epitaxial Lift off Devices with AuSn,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, 19(3), pp.575-580, 1996.
[21] Belouet, C., Villard, C., Fages, C., and Keller, D., “Achievement of Homogeneous AuSn Solder by Pulsed Laser-assisted Deposition,” Journal of Electronic Materials, 28(10), pp.1123–1126, 1999.
[22] Wolffenbuttel, R. F. and Wise, K. D., “Low-Temperature Silicon Wafer-to-Wafer Bonding Using Gold at Eutectic Temperature,” Sensors and Actuators A: Physical, 43(1-3), pp.223-229, 1994.
[23] Tiensuu, A. L., Bexell, M., Schweitz, J. A., Simth, L., and Johnsson, S., “Assembling Three Dimensional Microstructures Using Gold-Silicon Eutectic Bonding,” Sensors and Actuators A: Physical, 45(3), pp.227-236, 1994.
[24] Kallmayer, C., Lin, D., Kloeser, J., Oppermann, H., Zakel, E., and Reichl, H., “Fluxless Flip-chip Attachment Techniques Using the Au/Sn Metallurgy,” IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp.20-28, 1995.
[25] Merritt, S. A., Heim, P. J. S., Cho, S. H., and Dagenais, M., “Controlled Solder Interdiffusion for High Power Semiconductor Laser Diode Die Bonding,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, 20(2), pp.141-145, 1997.
[26] Shi, X. Q., Pang, H. L. J., Zhou, W., and Wang, Z. P., “Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy,” International Journal of Fatigue, 22(3), pp.217-228, 2000.
[27] Shi, X. Q., Pang, H. L. J., Zhou, W., and Wang, Z. P., “Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy,” ASME Journal of Electronic Packaging, 121(3), pp.179-185, 1999.
[28] Darveaux, R. and Banerji, K., “Constitutive Relations for Tin-based Solder Joints,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 15(6), pp.1013-1024, 1992.
[29] Yang, L. Q., Jang, S. H., Hwang, W. J., and Shin, M. W., “Thermal Analysis of High Power GaN-Based LEDs with Ceramic Package,” Thermochimica Acta, 455(1-2), pp.95–99, 2007.
[30] Teo, J. W. R., Ng, F. L., Goi, L. S. K., Sun, Y. F., Wang, Z. F., Shi, X. Q., Wei, J., and Li, G. Y., “Microstructure of Eutectic 80Au/20Sn Solder Joint in Laser Diode Package,” Microelectronic Engineering, 85(3), pp.512-517, 2008.
[31] Pittroff, W., Erbert, G., Beister, G., Bugge, F., Klein, A., Knauer, A., Maege, J., Ressel, P., Sebastian, J., Staske, R., and Traenkle, G., “Mounting of High Power Laser Diodes on Boron Nitride Heat Sinks Using an Optimized Au/Sn Metallurgy,” IEEE Transactions on Advanced Packaging, 24(4), pp.434-441, 2001.
[32] Tew, J. W. R., Wang, Z. F., Shi, X. Q., and Li, G. Y., “An Optimized Face-Down Bonding Process for Laser Diode Packages,” Electronics Packaging Technology Conference, pp.390-395, 2004.
[33] Tew, J. W. R., Shi, X. Q., and Yuan, S., “Au/Sn Solder for Face-Down Bonding of AlGaAs/GaAs Ridge Waveguide Laser Diodes,” Materials Letters, 58(21), pp.2695-2699, 2004.
[34] Teo, J. W. R, Li, G. Y., Ling, M. S., Wang, Z. F., and Shi, X. Q., “Parametric Investigation of Laser Diode Bonding Using Eutectic AuSn Solder,” Thin Solid Films, 515(10), pp.4340-4343, 2007.
[35] Kim, H. H., Choi, S. H., Shin, S. H., Lee, Y. K., Choi, S. M., and Yi, S., “Thermal Transient Characteristics of Die Attach in High Power LED PKG,” Microelectronics Reliability, 48(3), pp.445–454, 2008.
[36] Chung, T. Y., Jhang, J. H., Chen, J. S., Lo, Y. C., Ho, G. H., Wu, M. L., and Sun, C. C., “A Study of Large Area Die Bonding Materials and Their Corresponding Mechanical and Thermal Properties,” Microelectronics Reliability, 52(5), pp.872-877, 2012.
[37] Wild, M. J., Gillner, A., and Poprawe, R., “Locally Selective Bonding of Silicon and Glass with Laser,” Sensors and Actuators A:Physical, 93(1), pp.63-69, 2001.
[38] Lin, L., Cheng, Y. T., and Najafi, K., “Formation of Silicon-Gold Eutectic Bond Using Localized Heating Method,” Japanese Journal of Applied Physics, 37(15), pp.1412-1414, 1998.
[39] Cheng, Y. T., Lin, L., and Najafi, K., “Localized Silicon Fusion and Eutectic Bonding for MEMS Fabrication and Packaging,” Journal of Microelectromechanical Systems, 9(1), pp.3-8, 2000.
[40] Suenaga, N., Nakazono, M., and Tsuchiya, H., “Laser Soldering,” Welding Technique, 35(6), pp.58–65, 1987.
[41] Flanagan, A., Conneely, A., and Glynn, T. J., “Applications of High-Power Lasers in Electronic Assembly,” Key Engineering Materials, 118-119, pp.147–156, 1996.
[42] Hoult, A. P., McLenaghan, A. J., and Rathod, J., “Advances in Laser Soldering Using High Power Diode Lasers, Speedline Technology White Paper, 2003.
[43] Leutzinger, A., “Selecting Laser Selective Soldering,” Industrial Laser Solutions for Manufacturing, 2004.
[44] Wild, M. J., Gillner, A., and Poprawe, R., “Locally Selective Bonding of Silicon and Glass with Laser,” Sensors and Actuators A: Physical, 93(1), pp.63-69, 2001.
[45] Luo, C. and Lin, L., “The Application of Nanosecond-Pulsed Laser Welding Technology in MEMS Packaging with A Shadow Mask,” Sensors and Actuators A: Physical, 97-98, pp.398-404, 2002.
[46] Mescheder, U. M., Alavi, M., Hiltmann, K., Lietzau, Ch., Nachtigall, Ch., and Sandmaier, H., “Local Laser Bonding for Low Temperature Budget,” Sensors and Actuators A: Physical, 97-98, pp.422-427, 2002.
[47] Tao, Y., Malshe, A. P., and Brown, W. D., “Selective Bonding and Encapsulation for Wafer-Level Vacuum Packaging of MEMS and Related Micro Systerms,” Microelectronics Reliability, 44(2), pp.251-258, 2004.
[48] Tao, Y., Malshe, A. P., Brown, W. D., Dereus, D. R., and Cunningham, S., “Laser-Assisted Sealing and Testing for Ceramic Packaging of MEMS Devices,” IEEE Transactions on Advanced Packaging, 26(3), pp.283-288, 2003.
[49] Tan, A. W. Y. and Tay, F. E. H., “Localized Laser Assisted Eutectic Bonding of Quartz and Silicon by Nd:YAG Pulsed-Laser,” Sensors and Actuators A: Physical, 120(2), pp.550-561, 2005.
[50] Tan, A. W. Y., Tay, F. E. H., and Zhang, J., “Characterization of Localized Laser Assisted Eutectic Bonds,” Sensors and Actuators A: Physical, 125(2), pp.573-585, 2006.
[51] MSC. Software Corporation, MSC. MARC Product Documentation Volume A: Theory and User Information, MSC. Software Corporation, 2010.
[52] Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T., “Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel Part I. Theoretical Analysis,” Welding Journal, 68, pp.499-509, 1989.
[53] Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T., “Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel Part II. Experimental Correlation,” Welding Journal, 68, pp.510-519, 1989.
[54] Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T., “Heat Transfer During Nd:YAG Pulsed Laser Welding and Its Effect on Solidification Structure of Austenitic Stainless Steels,” Metallurgical Transactions A, 20A, pp.957-967, 1989.
[55] Jacquot, A., Lenoir, B.,Dauscher, A., Verardi, P., Craciun, F., Stolzer, M., Gartner, M., and Dinescu, M., “Optical and Thermal Characterization of AlN Thin Films Deposited by Pulsed Laser Deposition,” Applied Surface Science, 186(1-4), pp.507-512, 2002.
[56] Slack, G. A., Tanzilli, R. A., Pohl, R. O., and Vandersande, J. W., “The Intrinsic Thermal Conductivity of AIN,” Journal of Physics and Chemistry of Solids, 48(7), pp.641-647, 1987.
[57] Slack, G. A., Schowalter, L. J., Morelli, D., and Freitas, J., “Some Effects of Oxygen Impurities on AlN and GaN,” Journal of Crystal Growth, 246(3-4), pp.287-298, 2002.
[58] Palankovski, V., Schultheis, R., and Selberherr, S., “Simulation of Power Heterojunction Bipolar Transistors on Gallium Arsenide,” IEEE Transactions on Electron Devices, 48(6), pp.1264-1269, 2001.
[59] Palankovski, V. and Quay, R., Analysis and Simulation of Heterostructure Devices, Springer Wien, New York, 2004.
[60] Gonzalez, G. L., Liu, Y., Maganti, S. S., “Physical Propertis of Low Temperature Solders and Die Attach Materials,” Southcon/95. Conference Record, pp.340-344, 1995.
[61] MSC. Software Corporation, MSC. MARC Product Documentation Volume B: Element Library, MSC. Software Corporation, 2010.
[62] MSC. Software Corporation, MSC. MARC Product Documentation Volume D: User Subroutines and Special Routines, MSC. Software Corporation, 2010..
[63] Bellosi, A., Landi, E., and Tampieri, A., “Oxidation Behavior of Aluminum Nitride,” Materials Research Society, 8(3), pp.565-572, 1993.
[64] Guidoni, A. G., Kelly, R., Mele, A.,and Miotello, A., “Heating Effects and Gas-Dynamic Expansion of the Plasma Plume Produced by Irradiating a Solid with Laser Pulses,” Plasma Sources Science and Technology, 6(3), pp.260-269,1997.
[65] Molian, R., Shortriya, P., and Molian, P., “Thermal Stress Fracture Mode of CO2 Laser Cutting of Aluminum Nitride,” International Journal of Advanced Manufacturing Technology, 39(7-8), pp.725-733, 2008.
[66] Molian, R., Shrotriya, P., and Molian, P., “Improved Method of CO2 Laser Cutting of Aluminum Nitride,” Journal of Electronic Packaging, 130, pp.024501-1-3, 2008.
[67] Jiang, Q. Z., Edwards, M. J., Shields, P. A., Allsopp, D. W. E., Bowen, C. R., Wang, W. N., Toth, L., Pecz, B., Srnanek, R., Satka, A., and Kovac, J., “Growth of Crack-Free GaN Epitaxial Thin Films on Composite Si(111)/Polycrystalline Diamond Substrates by MOVPE,” Physica Status Solidi(c), 9(3-4), pp.650-653, 2012.
[68] Kipshidze, G., Nikishin, S., Kuryatkov, V., Choi, K., Gherasoiu, I., Prokofyeva, T., Holtz, M., Temkin, H., Hobart, K. D., Kub, F. J., and Fatemi, M., “High Quality AIN and GaN Grown on Compliant Si/SiC Substrates by Gas Source Molcular Beam Epitaxy,” Journal of Electronic Materials, 30(7), pp.825-828, 2001.
[69] Lee, K. J., Oh, T. S., Kim, T. K., Yang, G. M., and Lim, K. Y., “Growth and Properties of Blue/Green InGaN/GaN MQWs on Si(111) Substrates,” Journal of the Korean Physical Society, 47, pp.s512-s516, 2005.
[70] Feltin, E., Beaumont, B., Laugt, M., Mierry, P. D., and Vennegues, P., “Stress Control in GaN Grown on Silicon(111) by Metalorganic Vapor Phase Epitaxy,” Applied Physics Letters, 79(20), pp.3230-3232, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code