Responsive image
博碩士論文 etd-0719112-162447 詳細資訊
Title page for etd-0719112-162447
論文名稱
Title
以Flow-3D模擬內孤立波越過障礙物之行為
Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-15
繳交日期
Date of Submission
2012-07-19
關鍵字
Keywords
計算流體力學、Flow-3D、數值模擬、內孤立波
Computational Fluid Dynamics, Flow-3D, Numerical, Internal solitary waves
統計
Statistics
本論文已被瀏覽 5666 次,被下載 589
The thesis/dissertation has been browsed 5666 times, has been downloaded 589 times.
中文摘要
許多在海洋或港灣結構物受波浪作用之研究已因科技的進步及數值演算法的精進,可以使用高效率的數值計算軟體獲得更準確的結果。目前內波的生成、傳遞與碎波等物理機制是國內外海洋領域上重要研究課題之一,本研究利用FLOW-3D計算流體力學(Computational Fluid Dynamics,CFD)軟體,模擬上層為淡水、下層為鹽水的密度分層流體,使用重力混合塌陷方式製造內波,探討其通過長斜坡、短平台梯形斜坡及等腰三角形等常見的障礙物之波形演變與流場分佈。
本文同時介紹軟體操作設定及FLOW-3D應用於內波實驗,並參照前人實驗條件及結果,模擬實驗內波傳遞之過程;以模擬成果驗証實驗數據,模擬先分析重力塌陷法造波之閘門開啟速率對內波傳遞時間及振幅的影響;模擬結果發現,閘門開啟速率快,內波振幅大、傳遞速度快;反之,閘門開啟速率慢,則內波振幅小、傳遞速度慢;但兩者並非線性等比關係。本研究另模擬內孤立波通過不同障礙物(長斜坡、梯形斜坡短平台及等腰三角形)之傳遞過程,討論內波經單一障礙物之波形演變、渦動及流場變化。由研究發現,若能採用極細網格與費心分析數值模擬的圖形輸出,相信比實驗室實驗觀察更能深入瞭解內孤立波的傳遞特性。
Abstract
Due to advances in technology and sophistication of many efficient algorithms, accurate numerical results can be achieved by using highly efficient computational software for research in wave action on coastal and harbor structures. These advances have benefitted the research in the physical phenomena of internal wave generation, propagation and breaking, which are some of the important topics in oceanography. In this study, the Flow-3D CFD (Computational Fluid Dynamics) software is used to simulate internal solitary wave motion in a density stratified fluid, in which the upper and lower layers are fresh and brine water, respectively. An internal solitary wave (ISW) is produced numerically by gravitational collapse mechanism in a numerical wave flume of 0.7 x 0.5 x 12.0 m (height x width x length ). The ISW in depression is then allow to propagate and across four different bottom obstacles (long uniform slope, trapezoidal section with short platform and isosceles triangle), in order to explore its waveform evolution and flow field distribution.
This study also describes the setting and operation of the Flow-3D software, its application to the internal wave experiment, as well as verification of the numerically simulated results using previous laboratory experimental data. In this study, the lifting speed for the sluice gate was vital for not only the amplitude of an ISW, but also the speed of wave propagation in the flume. The result showed that the faster the gate opening, the faster propagation speeds and larger amplitude for the ISW so generated. Conversely, a slower gate opening led to weak wave speed and small amplitude to an ISW. Upon analyzing the results, we have found that the relationship between the speed of the gate opening and the wave propagation speed are not linear. Moreover, preliminary analysis and discussion are given for the ISW propagation over an obstacle (uniform long slope, trapezoidal section with short platform, and isosceles triangle), particularly on waveform evolution, vortex motions and flow field variations. It is believed that we can gain a better and thorough understanding of the internal wave characteristics, compared to physical laboratory experiments, if the numerical tool is applied with very fine grids and detailed analysis on the numerical outputs.
目次 Table of Contents
中文摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 理論解析 3
1.2.2 現場調查 4
1.2.3 實驗室研究 7
1.2.4 數值模擬 9
1.3 研究目的 11
1.4 本文架構 11
第二章 數值模式 12
2.1 FLOW-3D 軟體簡介 12
2.1.1 網格處理方法 12
2.1.2 障礙物處理方法 13
2.1.3 流體界面和自由液面方法 14
2.2 基本控制方程式 16
2.2.1   Navier-Stokes控制方程式 16
2.2.2   FLOW-3D控制方程式 16
2.3 初始條件與邊界條件 20
2.4 模型輔助設計 21
第三章 模式驗證及操作 24
3.1 實驗室內孤立波實驗 24
3.2 FLOW-3D模式執行步驟 26
3.3 模擬結果初步驗證 31
第四章 模擬結果與討論 41
4.1 閘門開啟速率之影響 41
4.2 內波傳遞的波形與流場 50
4.2.1 內波在長斜坡上傳遞之波形與流場 50
4.2.2 內波通過短平台梯形斜坡之波形與流場 60
4.2.3 內波通過等腰三角形之波形與流場 68
第五章 結論與建議 75
5.1 結論 75
5.2 建議 76
參考文獻 80
參考文獻 References
Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651.
Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia.
Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328.
Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270.
Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375.
Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397.
Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170.
Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359.
Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103.
Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices.
Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150.
Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73.
Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264.
Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press.
Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21.
Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.
Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308.
Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102.
Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410.
Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia
Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53.
Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251.
Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese).
Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107.
Ming-Hung Cheng, John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope. Environ Fluid Mech, 9:321–340.
Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering.
Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916.
Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177.
Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549
Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6.
Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9.
Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460.
Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390.
Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428.
Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455.
Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proceedings of the London mathematical society, 8: pp. 170-177.
Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188.
Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793.
Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20
齊鵬(2003)。「三維數值波浪水池技術與應用」,大連理工大學學報第43卷第6期,825~830頁。
陳信旭(2004)。「孤立內波的傳遞及在單斜坡上反射之實驗研究」,國立中山大學海洋物理研究所,碩士論文。
郭青峰(2005)。「孤立內波的傳遞及受障礙物影響之研究」,國立中山大學海洋物理研究所,碩士論文。
陳震遠(2006),「內波在斜坡及海及地形的演化實驗」,國立中山大學海下科技暨應用海洋物理研究所博士論文。
謝志敏(2007)。「波浪翻越防坡堤流動之數值模擬」,第29屆海洋工程研討會論文集,385~389頁。
傅科憲(2007)。「非線性效應與混合層厚度對非線性內波傳播的影響」,國立中山大學海洋物理研究所,碩士論文。
陳建宇(2007)。「環圈堆保護橋墩之試驗及三維流場之數值模擬」,國立成功大學水利及海洋工程研究所,碩士論文。
賴德旺(2008)。「孤立內波於大陸階之波型演化實驗」,國立中山大學海下科技暨應用海洋物理研究所,碩士論文。
陳韋嘉(2008)。「孤立波碎波通過不透水斜坡式海堤之試驗研究」,國立成功大學水利暨海洋工程研究所,碩士論文。
楊政翰(2008)。「FLOW-3D應用於土石流防砂壩前流場及衝擊力研究」,國立成功大學水利及海洋工程學系,碩士論文。
符勇慶(2008)。「南海北部強非線性內波之數值模擬」,國立台灣大學理學院海洋研究所,碩士論文。
許明光、劉安國(2010)。「神秘的巨浪-南海內波」,國家實驗研究院科技政策研究與資訊中心,科學發展電子期刊。
謝志敏,王育崇,周金益,黃榮鑑(2011)。「孤立內波與三角型底床互制作用之數值模擬」,第33屆海洋工程演討會論文集,269~274頁。
王育崇(2011)。「孤立內波與結構物互制作用」,國立高雄海洋科技大學海事學院海事資訊科技研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code