Responsive image
博碩士論文 etd-0719113-105458 詳細資訊
Title page for etd-0719113-105458
論文名稱
Title
單模光纖干涉儀近場光纖相位量測
Direct Near-Field Phase Measurements of Fiber Employing a Single-Mode Fiber Interferometer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-20
繳交日期
Date of Submission
2013-08-19
關鍵字
Keywords
980nm幫浦雷射、單模光纖干涉儀、光纖近場、光纖微透鏡、光場
980 nm pumping laser, interferometer, hyperboloid microlensed fiber, mode field
統計
Statistics
本論文已被瀏覽 5675 次,被下載 466
The thesis/dissertation has been browsed 5675 times, has been downloaded 466 times.
中文摘要
本論文係研究雙變曲率光纖微透鏡與980nm高功率幫浦雷射間耦光機制,藉由單模光纖干涉儀進行光纖透鏡之相位分佈量測及波前傳播量測,並量測其光纖透鏡的光場,與雷射光源的光場變化相比較,從波前與光場這兩方面探討所設計的光纖透鏡是否與980 nm高功率幫浦雷射的近場傳播波前相匹配。
相位分佈量測是利用單模光纖干涉儀之參考光纖與量測光纖產生的干涉條紋來分析,藉由量測不同平面的相位分佈情形,觀察光經過光纖透鏡後在空氣中的光波前傳播情形,從量測結果觀察到經過光纖透鏡後,光傳播方式為曲面波,在距離透鏡頂端10 μm處有似焦平面的狀況,高斯公式擬合曲線經過此範圍產生相位反轉的現象,從原本開口向上的曲線,曲率半徑由大變小,經此平面後,其曲線變為開口向下,曲率半徑由小開始漸漸變大,形成光波先聚焦後再發散的現象。
在光場量測上,改變不同架構去量測光纖透鏡光場圖案變化,藉由CCD量測,可以在遠場量測到其光纖透鏡呈垂直向橢圓的光場,隨著距離拉遠其橢圓形的光場也漸漸變大。從遠場量測到的光束寬度數據,對近場做光束寬度大小推導,可以分析到在z=10.5 μm時,光纖透鏡短軸與長軸在光束寬度大小相同,這時光場圖案呈現圓形。因此,其光纖透鏡傳播過程從一水平向的橢圓場形,在光束寬度相同時呈現圓形場形,隨傳播距離增加形成垂直向橢圓場型向遠距離傳播。
  從波前和光場兩部分來探討雷射與光纖透鏡間的耦合效果,可發現為光纖透鏡與980nm幫浦雷射波前傳播同為曲面波,光場的變化於z=10μm附近產生,其趨勢也互相吻合為圓形場型,兩者模態匹配,因此光纖透鏡在與雷射光源耦合上比平端光纖的耦合效果好而達到比較高的耦光效率。此研究可提供確實的方法去量測光纖微透鏡的近場波前特性。
關鍵詞:980nm幫浦雷射、光纖近場、光纖微透鏡、單模光纖干涉儀、光場
Abstract
In order to understand the coupling mechanism between hyperboloid microlensed fiber (HMF) and 980nm pumping laser, the phase distribution and intensity distribution of propagating beam from HMF were measured. A single mode fiber interferometer was employed to measure the phase distribution of the HMF and a CCD with photodetector was employed to measure the intensity distribution of HMF along the Z-axis. A good understanding of the near-field phase and intensity distributions of laser and fiber are essential for micro-optic designs with better mode matching to achieve efficient coupling between lasers to fibers.
The wavefront distribution was measured by analyzing interference fringes generated from the reference beam and the measured beam. According to the measured results, the wavefront of the HMF is curved and there was a focal particular plane at z = 10μm. The wavefront inverted as the wavefront propagated through the particular plane. For the intensity distribution of propagating beam through HMF, a CCD with photodetector was employed to investigate the variation of the beam spot profile. The mode field of HMF was a longitudinal ellipse in the far field. As we calculated intensity distribution of z < 50μm, it could be found the mode field distribution at z = 10-μm had a circular shape with a radius of 2.2 μm. These results indicated the consistency between the measured wavefront radius of curvatures and intensity distribution of lensed fiber at 10 μm along the z axis.
The results show that the mode matching of wavefront and spot size for laser diode and lensed fiber in the near-field region. This study may provide an essential method for the wavefront distributions of hyperboloid microlensed fiber measurement.

Keywords: 980 nm pumping laser, hyperboloid microlensed fiber, interferometer, mode field
目次 Table of Contents
中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vi
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 近場量測 3
1.3.2 光纖微透鏡 5
1.4 論文架構 6
第二章 理論基礎 7
2.1 雷射原理 7
2.2 單模光纖干涉儀之原理 9
2.3 傅立葉分析 10
2.4 高斯光束傳播與模態耦合理論 12
2.4.1 高斯光束 12
2.4.2 模態耦合 16
2.5 雙曲線光纖微透鏡 18
2.5.1 雙曲線光纖微透鏡曲率設計 18
2.5.2 雙曲線光纖微透鏡研製原理 22
第三章 雷射近場實驗架構 25
3.1 單模光纖干涉儀架構 25
3.2 光纖近場量測 37
3.3 光場量測架構 41
第四章 近場相位分佈量測結果及分析 45
4.1 第一型量測架構量測 45
4.1.1 平端光纖相位分佈量測 46
4.1.2 光纖透鏡相位分佈量測 47
4.2 第二型量測架構量測 50
4.2.1 平端光纖相位分佈量測 50
4.2.2 光纖透鏡相位分佈量測 53
4.3 光場量測結果 56
4.3.1 第一型光場量測架構結果 56
4.3.2 第二型光場量測架構結果 58
4.3.3 第三型光場量測架構結果 60
4.3.4 光纖透鏡光束寬度推導 71
第五章 結論與未來工作 75
參考文獻 77
參考文獻 References
[1] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier,” Optics Letters, vol. 12, pp. 888-890, 1987.
[2] S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and Characterization of Low-Loss Optical Fibers Containing Rare-Earth Ions,” Journal of Lightwave Technology, vol. LT-4, pp. 870-876, 1986.
[3] W. J. Miniscalco, “Erbium-Doped Glasses for Fiber Amplifiers at 1500 nm,” Journal of Lightwave Technology, vol. 9, pp. 234-250, 1991.
[4] M. Yamada, M. Shimizu, T. Takeshita, M. Okayasu, M. Horiguchi, S. Uehara, and E. Sugita, “Er3+-Doped Fiber Amplifier Pumped by 0.98 µm Laser Diodes,” IEEE Photonics Technology Letters, vol. 1, pp. 422-424, 1989.
[5] M. Yamada, M. Shimizu, M. Okayasu, T. Takeshita, M. Horiguchi, S. Uehara, Y. Tachikawa, and E. Sugita, “Noise Characteristics of Er3+-Doped Fiber Amplifiers Pumped by 0.98 and 1.48 µm Laser Diodes,” IEEE Photonics Technology Letters, vol. 2, pp. 205-207, 1990.
[6] H. M. Presby and C. R. Giles, “Asymmetric Fiber Microlenses for Efficient Coupling to Elliptical Laser Beams,” IEEE Photonics Technology Letters, vol. 5, pp. 184-186, 1993.
[7] R. E. Smith, C. T. Sullivan, G. A. Vawter, G. R. Hadley, J. R. Wendt, M. B. Snipes, and J. F. Klem, “Reduced Coupling Loss Using a Tapered Adiabatic-Following Fiber Coupler,” IEEE Photonics Technology Letters, vol. 8, pp. 1052-1054, 1996.
[8] Y. Fu, N. K. A. Bryan, and O. N. Shing “Integrated Micro-Cylindrical Lens with Laser Diode for Single-Mode Fiber Coupling,” IEEE Photonics Technology Letters, vol. 12, pp. 1213-1215, 2000.
[9] S. Y. Huang, C. E. Gaebe, K. A. Miller, G. T. Wiand, and T. S. Stakelon, “High Coupling Optical Design for Laser Diodes with Large Aspect Ratio,” IEEE Transactions on Advanced Packaging, vol. 23, pp. 165-169, 2000.
[10] V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Yang, “Efficient Power Coupling from A 980-nm, Broad-Area Laser to A Single-Mode Fiber Using A Wedge-Shaped Fiber Endface,” Journal of Lightwave Technology, vol. 8, pp. 1313-1318, 1990.
[11] H. M. Presby and C. R. Giles, “Asymmetric Fiber Microlenses for Efficient Coupling to Elliptical Laser Beams,” IEEE Photonics Technology Letter, vol. 5, pp. 184-186, 1993.
[12] C. A. Edwards, H. M. Presby, and C. Dragone, “Ideal Microlens for Laser to Fiber Coupling,” Journal of Lightwave Technology, vol. 11, pp. 252-257, 1993.
[13] H. Yoda and K. Shiraishi, “A New Scheme of Lensed Fiber Employing A Wedge-Shaped Graded-Index Fiber Tip for the Coupling Between High-Power Laser Diodes and Single-Mode Fiber,” Journal of Lightwave Technology, vol. 19, pp. 1910-1917, 2001.
[14] H. Yoda and K. Shiraishi, “Cascaded GI-fiber Chips with A Wedge- Shaped End for the Coupling between An SMF and A High-Power LD with Large Astigmatism,” Journal of Lightwave Technology, vol. 20, pp. 1545-1548, 2002.
[15] Y. Irie, J. Miyokawa, A. Mugino and T. Shimizu, “Over 200 mW 980 nm Pump Laser Diode Module Using Optimized High-Coupling Lensed Fiber,” in Tech. Dig. OFC/IOOC'99, San Diego, CA, pp. 238-240, 1999.
[16] S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh, and W.H.Cheng, “A Novel Scheme of Lensed Fiber Employing A Quadrangular- Pyramid-Shaped fiber Endface for Coupling between High-Power Laser Diodes and Single-Mode Fibers,” Journal of Lightwave Technology, vol. 22, pp. 1374-1379, 2004.
[17] S. M. Yeh, S. Y. Huang, and Wood-Hi Cheng, “A New Scheme of Conical-Wedge-Shaped Fiber Endface for Coupling between High-Power Laser Diodes and Single-mode Fibers,” Journal of Lightwave Technology, vol. 23, pp. 1781-1786, 2005.
[18] Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric Elliptic-Cone-Shaped Microlens for Efficient Coupling to High-Power Laser Diodes,” Optics Express, vol. 14, pp. 1434-1442, 2006.
[19] 林啟中, “非軸對稱橢圓錐光纖透鏡之研製與特性,” 碩士論文, 2007.
[20] 林詠弦, “雙曲線光纖微透鏡曲率半徑熔燒製程及提高耦光效率之研究,” 碩士論文, 2011.
[21] M. liyama, T. Kamiya, and H. Yanai, “Optical Field Mapping Using Single-Mode Optical Fibers,” Appl. Opt., vol. 17, pp. 1965-1917, June 1978.
[22] W. D. Herzog, M. S. Unlu, B. B. Goldberg, G. H. Rhodes, and C. Harder, “Beam Divergence and Waist Measurements of Laser Diodes by Near-Field Scanning Optical Microscopy,” Appl. Phys. Lett., vol. 70, pp. 688-690, February 1997.
[23] 盧廷昌、王興宗, “半導體雷射導論,” 初版, 台灣:五南, 第四章, 2010.
[24] 許宏崑, “電容式測距儀量測蝶式模組構裝之焊後位移與溝槽式扣件補償,” 碩士論文, 2011.

[25] Joseph W. Goodman, “Introduction to Fourier Optics,” McGraw-Hill Inc., 1995.
[26] Adof W. Lohmann, “Wavefront Reconstruction for Incoherent Object,” J. Opt. Soc. Am., 55:1555, 1965.
[27] James S. Walker, “Fast Fourier transforms,” 2nd ed., Boca Raton, Fla. : CRC Press, 1996.
[28] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” New York, NY, John Wiley and Sons, pp. 81-83, 1991.
[29] 呂昱寬, “波前量測應用於雷射與光纖耦合之研究,” 博士論文,國立中山大學光電工程研究所, 2008.
[30] V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient Power Coupling from A 980-nm, Broad-Area Laser to A Single-Mode Fiber Using A Wedge-Shaped Fiber Endface,” Journal of Lightwave Technology, vol.8, pp. 1313-1318, 1990.
[31] C. A. Edwards, H. M. Presby, C. Dragone, “Ideal Microlenses for Laser to Fiber Coupling,” Journal of Lightwave Technology, vol. 11, pp. 252 -257, 1993.
[32] S. Teich, Fundamentals of Photonics, Canada, Wiley Interscience, Ch. 1-2, 1991.
[33] 劉育達, “雙變曲率光纖微透鏡之研究,” 博士論文, 國立中山大學光電工程研究所, 2011.
[34] Y. D. Liu, Y. C. Tsai, L. J. Wang, Y. K. Lu, M. C. Hsieh, S. M. Yeh, and W. H. Cheng, “New Scheme of Double-Variable-Curvature Microlens for Efficient Coupling High-Power Lasers to Single-Mode Fibers,” Journal of Lightwave Technology, vol. 29, pp898-904, 2011.
[35] 劉育達, “非對稱型光纖端面研磨機構設計之研究,” 碩士論文, 中山大學機械與機電工程學系, 2006.
[36] Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric Elliptic-Cone-Shaped Microlens for Efficient Coupling to High-Power Laser Diodes,” Optics Express, vol. 15, pp.1434-1442, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code