Responsive image
博碩士論文 etd-0719113-161633 詳細資訊
Title page for etd-0719113-161633
論文名稱
Title
氧化鉿薄膜電阻切換特性之研究
Study on Resistance Switching Characteristics of Hafnium Oxide Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-28
繳交日期
Date of Submission
2013-08-19
關鍵字
Keywords
能量逸散速率、氧濃度、氧化鉿、電阻式記憶體、能斯特方程式
Hafnium Oxide, RRAM, Concentration of Oxygen, Nernst Equation, Energy Dissipation Rate
統計
Statistics
本論文已被瀏覽 5744 次,被下載 417
The thesis/dissertation has been browsed 5744 times, has been downloaded 417 times.
中文摘要
電阻式記憶體被認為是次世代記憶體中最有潛力一,其具有非揮發,極短的寫入與抹除時間,低電壓操作、等優良特性。因此近年來被廣泛的研究,但是其電阻切換機制,仍然沒有一套完整的理論。
因此本研究將針對電阻式記憶體的切換機制作探討,主要利用原子層沉積(ALD)的氧化鉿薄膜作為主動層,並利用Fast IV量測技術,給入一個三角波的正偏脈衝電壓,使電阻式記憶體進行Set過程,當隨著脈衝升壓的時間變長,Set電壓下降,將實驗數據分析,在時間無窮遠時,可以得到一個最小的Set電壓值,稱為Set臨界電壓。另外發現臨界電壓與溫度項無關,且符合Nernst equation。
另外對不同限流Forming的電阻式記憶體,萃取其臨界電壓,可以發現Forming限流與臨界電壓呈負線性相關,根據Nernst equation,發現參與Set反應的氧濃度,會隨Forming限流呈指數上升,其是因為在Forming過程中發生了連鎖反應。
本實驗除了對Set作探討,亦對Reset過程作研究。由於元件的結構為Ti/HfO2/TiN,所以RRAM的切換端可在Ti電極或是TiN電極,藉由Fast IV量測,可以得到時間-電壓-電流,可以求得Reset發生前所需要的能量,藉由不同的脈衝升壓速率,進而得到能量逸散速率,可以發現Ti電極操作端其能量逸散速率比TiN電極端操作的大,其是因為Ti電極散熱速率比TiN電極快,所以能將能量給更大面積的氧原子,使得在DC IV上,可以觀察Ti電極Reset過程有更劇烈的電阻上升速率。
Abstract
Resistive Random Access Memory (RRAM) is considered as one of the most promising candidate for the next-generation memories due to their excellent properties such as nonvolatile property, fast operation speed, low operation voltage. Even though RRAM has been extensively studied in recent years, there is still no comprehensive theory to clarify the resistive switching mechanism. Therefore this study mainly focuses on the RRAM switching process to better reveal the characteristics involved in this relative blank area.
The active layer (hafnium oxide) of RRAM is deposited by Atomic Layer Deposition (ALD) with a thickness of 10nm. Fast IV test technique is applied to track the set process of RRAM devices using positive triangle wave pulse, from which we find that set voltage decreases with the increase of rising time of the applied pulse. By analyzing the experimental data, critical voltage is defined when the rising time is at infinity. Meanwhile we find that the critical voltage is not relevant to temperature but in accordance with the Nernst equation.
Besides RRAM electro-forming process is thoroughly investigated, from which we find the concentration of oxygen rises exponentially with the increase of forming compliance current. And chain reaction model is proposed to clarify this process.
In this study Reset process is also investigated in addition to the Set process. As the structure of the device is Ti/HfO2/TiN, the resistance switch will occur on Ti or TiN electrode. With help of Fast IV measurement, time-voltage-current relationship can be obtained, from which energy needed before reset can be calculated . What’s more we can find the energy dissipation rate of Ti electrode is higher than that of TiN, measured by vary ramp rate voltage pulse. And this results from faster thermal dissipation rate of Ti electrode, which in turn delivers energy to larger amount of oxygen ions with wider range. And this is also the reason of more drastic rising rate of resistance in reset process near Ti electrode.
目次 Table of Contents
目錄
致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖片目錄 vi
表格目錄 viii
第一章 序論 1
1-1前言 1
1-2研究目的與動機 2
第二章 文獻回顧 3
2-1 記憶體簡介 3
2-1-1相變化記憶體(Phase Change RAM, PCRAM) 4
2-1-2 磁阻式記憶體(Magnetic RAM, MRAM) 5
2-1-3 電阻式記憶體(Resistance RAM, RRAM) 6
2-2電阻式記憶體材料 8
2-2-1高分子材料 8
2-2-2鈣鈦礦 8
2-2-3過渡金屬氧化物 10
2-3 絕緣體載子傳輸機制 10
2-3-1歐姆傳導(Ohmic Conduction) 11
2-3-2 蕭基發射(Schottky emission) 12
2-3-3普爾-法蘭克發射( Poole-Frenkel Emission ) 13
2-3-4跳躍傳導(Hopping Conduction) 14
2-3-5穿隧(Tunneling) 15
2-3-6 空間電荷限制電流(Space Charge Limit Current, SCLC) 16
第三章 實驗設備與原理 17
3-1半導體精準電性量測系統 17
第四章 實驗結果與討論 19
4-1 氧化鉿薄膜在不同溫度下萃取Set臨界電壓 19
4-1-1能斯特方程式(Nernst equation) 19
4-1-1 常溫下萃取氧化鉿薄膜Set臨界電壓 20
4-1-2氧化鉿薄膜在不同溫度下萃取Set臨界電壓 24
4-2 不同Forming限流氧化鉿薄膜萃取Set臨界電壓 32
4-3 切換端電極散熱速率影響Reset過程 40
第五章 結論 52
References 53
參考文獻 References
References
[1]彭茂榮,下世代記憶體技術發展與廠商佈局,IEK產業經濟與趨勢研究中心,
2012。

[2]K. Hsieh, The Current progress of NVM, Macronix International Co., Ltd., 2011.

[3]葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展-現在與未來”,物理雙月刊26卷,第607頁-619頁,2004。

[4]D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, “The missing memristor found”, Nature, vol. 453, pp. 80-83, 2008.

[5]K. Szot, W. Speier, G. Bihlmayer, R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3”, Nature Materials vol. 5, pp. 312-320, 2006.

[6]S. Q. Liu, N. J. Wu, A. Ignatiev, “Electric-pulse-induced reversible resistance
change effect in magnetoresistive films”, Appl. Phys. Lett., vol.76, pp. 2749, 2000.

[7]C. Rossel, G. l. Meijer, D. Bre’maud, and D. Widmer, “Electrical current distribution across a metal-insulator-metal structure during bistable switching”, App. Phys. Lett., vol. 90, pp. 2892, 2001.

[8]Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, “Polymer electronic memories: Materials, devices and mechanisms.”, Progress in
Polymer Science vol. 33, pp. 917-978, 2008.

[9]K. M. Kim, B. J. Choi, C. S. Hwang, “Localized switching mechanism in
resistive switching of atomic-layer-deposited TiO2 thin films.”, Appl. Phys.
Lett. , vol. 90, pp.242906, 2007.

[10]A. Sawa, “Resistive switching in transition metal oxides.”, Materials Today, vol.
11, pp. 28-36, 2008.

[11]L. P. Ma, “Organic electrical bistable devices and rewritable memory cells,”
Appl. Phys. Lett., vol. 80, pp. 2997-2999, 2002.

[12] http://blog.sciencenet.cn/blog-249679-283635.html

[13]C. C. Lin, “Resistive switching mechanisms of V-doped SrZrO3 memory films,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 725–727, 2006.

[14]C. Y. Liu, “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 351-353, 2005.

[15] A. Beck, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., vol. 77, pp. 139-141, 2000.

[16] W. Y. Chang, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 92, pp. 022110-1~3, 2008.
[17]M. Y. Chan, “Resistive switching effects of HfO2 high-k dielectric,”
Microelectronic Engineering, vol. 85, pp. 2420-2424, 2008

[18] C. Y. Lina, “Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices,” Surface & Coatings Technology,vol. 203, pp. 628-631, 2008.

[19] S. Seo, et al., “Reproducible resistance switching in polycrystalline NiO films,”Appl. Phys. Lett., vol. 85, pp. 5655-5657, 2004.

[20] C. P. Hsiung, and J. Y. Gan, “Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering,” Electrochemical and Solid-State Letters, vol. 12, pp. 31-33, 2009.

[21]董承瑋,“鋅摻雜二氧化矽薄膜電阻式記憶體之製作與硏究.”,國立中山大學,碩士論文, 2011。

[22] 潘盈志,“鋯摻雜氧化矽薄膜電阻式記憶體之製作與研究”,國立中山大學,碩士論文, 2012。

[23]M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung,I. K. Yoo, K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/ TaO2−x bilayer structures”, Nature Materials, vol. 10, pp. 625–630, 2011.

[24] 徐詠恩,“次世代新穎非揮發性電阻式記憶元件製作與物理機制研究”, 國立中山大學,博士論文, 2012。

[25]陳文照,曾春風,游信和合譯,“材料科學工程”,初版,高立圖書有限公司,
第794頁,1999。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code