Responsive image
博碩士論文 etd-0719113-170916 詳細資訊
Title page for etd-0719113-170916
論文名稱
Title
FeTe3O7X(X=Cl, Br)之磁性與磁介電性質研究
The Study of Magnetic and Magnetodielectric Properties on FeTe3O7X(X=Cl, Br)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-02
繳交日期
Date of Submission
2013-08-19
關鍵字
Keywords
鐵鍗氧氯、反鐵磁自旋二聚體、多鐵材料、鐵鍗氧溴、磁介電性質
multiferroic material, FeTe3O7Cl, FeTe3O7Br, magntodielectric properties, antiferromagnetic spin dimer
統計
Statistics
本論文已被瀏覽 5714 次,被下載 582
The thesis/dissertation has been browsed 5714 times, has been downloaded 582 times.
中文摘要
Fe3+-Te4+-O-X(X=Cl, Br)系統因Fe3+供給的磁性來源及Te4+的孤對電子有可能造成系統電荷分布不均勻而產生的極化,被認為具有多鐵性質的可能性很高。
我們針對反鐵磁自旋二聚體FeTe3O7X(X=Cl, Br)的磁性以及磁介電性質進行探討。從χ-T的量測中得知,氯化合物的磁性相轉變溫度約為102 K,溴化合物則是約94 K。Curie-Weiss law的擬合印證磁性來源為Fe3+離子。由結構上來看,一個Fe3+形成一個[FeO5]的雙三角錐,兩個鄰近的[FeO5]分享其中一個邊,形成二聚體[Fe2O8],[Fe2O8]間是由Te4+隔離,形成由凡得瓦作用力構成的層狀結構。在介電常數的量測裡,我們發現在超過300 K時,介電常數會隨著磁場增加而產生有趣的變化。此溫區在20 kOe以下,介電常數隨著磁場增加而增加,但超過20 kOe後,介電常數又隨著磁場增加而降低。在同一區域,我們無法擬合磁介電效應的偶合常數,但可以發現介電性質的確有受到磁場的影響而發生有趣的磁介電性質變化。
由於磁性的相轉變溫度發生在約100 K附近,但電性隨著磁場發生的變化卻超過300 K,加上無法得到磁介電效應的偶合常數,我們證實此系統不是多鐵材料。
Abstract
The Fe3+-Te4+-O-X(X=Cl, Br) system has Fe3+ ion to be the source of magnetism and Te4+ ion has lone pair to result in the charge distribution is not uniform, and it can be regarded as the reason which the system has ferroelectricity.
We concentrate on magnetic and magnetodielectric properties on the antiferromagnetic spin dimer compounds FeTe3O7X(X=Cl, Br). The magnetic transition temperature appear about 102 K for X=Cl while it shows about 94 K for X=Br. From structure, one unique Fe3+ ion coordinate a [FeO5] trigonal bipyramid, and two such trigonal bipyramids have a common edge to form [Fe2O8] dimer units that are isolated from each other by Te4+ ions to form layer structure. In dielectric measurement, we can observe an interesting phenomenon above 300 K. At this temperature range, dielectric constant increase with increasing magnetic field below 20 kOe, but it decrease with increasing magnetic field above 20 kOe. At the same range, we can not fit magnetodielectric coupling constant, but it is indeed that dielectric constant change when we change magnetic field.
Because magnetic transition temperature shows about 100 K, electric transition is above 300 K and we can not get coupling constant. We confirm that this system is not multiferroic material.
目次 Table of Contents
致謝 i
論文摘要 ii
Abstract iii
目錄 iv
圖目錄 v
第一章:簡介 1
1.1 多鐵材料 1
1.2 FeTe3O7X(X=Cl, Br)研究背景 11
1.3 FeTe3O7X(X=Cl, Br)研究動機 16
第二章:實驗儀器與方法 17
2.1 FeTe3O7X(X=Cl, Br)樣品製備 17
2.2 磁性量測儀器 17
2.2.1 超導量子干涉磁量儀 17
2.2.2 磁性量測方式 24
2.3 電性量測儀器 25
2.3.1 Close Cycle Refrigerator System 25
2.3.2 Magnetic Property Measurement System XL-7 25
第三章:結果與討論 26
3.1 FeTe3O7X(X=Cl, Br)磁性實驗結果與討論 26
3.2 FeTe3O7Br電性實驗結果與討論 36
3.3 FeTe3O7Br之磁介電性質探討 40
第四章:結論 41
參考文獻 42
參考文獻 References
[1] H. Schmid,“Multi-ferroic magnetoelectrics”, Ferroelectrics 162, 317 (1994).

[2] R. S. Freitas, J. F. Mitchell, and P. Schiffer,“Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3”, Phys. Rev. B 72, 144429 (2005).

[3] J.-P. Rivera,“A short review of the magnetodielectric effect and related experimental techniques on single phase (multi-) ferroics”, Eur. Phys. J. B 71, 299 (2009).

[4] B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu,“Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3”, Phys. Rev. B 70, 212412 (2004).

[5] S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang,“Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix”, Phys. Rev. B 82, 104107 (2010).

[6] D. Hreniak, L. Marciniak, W. Strek, F. Piccinelli, A. Speghini, and M. Bettinelli,“Comment on “Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix””, Phys. Rev. B 84, 056102 (2011).

[7] S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang,“Reply to “Comment on ‘Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix’””, Phys. Rev. B 84, 056103 (2011).

[8] N. A. Spaldin, S-W. Cheong, and R. Ramesh,“Multiferroics: past, present, and future”, Phys. Today 63, 38 (2010).

[9] W. Eerenstein, N. D. Mathur, and J. F. Scott,“Multiferroic and magnetoelectric materials”, Nature (London) 442, 17 (2006).

[10] N. A. Spaldin, and M. Fiebig,“The renaissance of magnetoelectric multiferroics”, Science 309, 391 (2005).

[11] O. Zaharko, H. M. Ronnow, A. Daoud-Aladine, S. Streule, F. Juranyi, J. Mesot, H. Berger, and P. J. Brown,“Incommensurate magnetism in coupled spin tetrahedral system Cu2Te2O5Cl2”, Low Temp. Phys. 31, 814 (2005).

[12] J. Kreitlow, S. Süllow, D. Menzel, J. Schoenes, P. Lemmens, and M. Johnsson,“Unusual criticality of Cu2Te2O5Br2 under pressure”, J. Magn. Magn. Mater. 290, 959 (2005).

[13] S. J. Crowe, S. Majumdar, M. R. Lees, and D. McK. Paul, R. I. Bewley, S. J. Levett, and C. Ritter,“Neutron inelastic scattering investigation of the magnetic excitations in Cu2Te2O5X2 (X=Br, Cl)”, Phys. Rev. B 71, 224430 (2005).

[14] O. Zaharko, Hønnow, J. Mesot, S. J. Crowe, D. McK. Paul, P. J. Brown, A. Daoud-Aladine, A. Meents, A. Wagner, M. Prester, and H. Berger,“Incommensurate magnetic ordering in Cu2Te2O5X2 (X=Cl, Br) studied by single crystal neutron diffraction”, Phys. Rev. B 73, 064422 (2006).

[15] M. Prester, A. Smontara, I. Živković, A. Bilušić, D. Drobac, H. Berger, and F. Bussy,“Ground-state order and spin-lattice coupling in tetrahedral spin systems Cu2Te2O5X2 (X=Br or Cl)”, Phys. Rev. B 69, 180401 (2009).

[16] O. Zaharko, A. Daoud-Aladine, S. Streule, J. Mesot, P.-J. Brown, and H. Berger,“Incommensurate magnetic ordering in Cu2Te2O5X2 (X=Cl, Br) studied by neutron diffraction”, Phys. Rev. Lett. 93, 217206 (2004).

[17] M. Johnsson, K. W. Törnroos, F. Mila, and P. Millet,“Tetrahedral clusters of copper(II): crystal structures and magnetic properties of Cu2Te2O5X2(X=Cl, Br)”, Chem. Mater. 12, 2853 (2000).

[18] P. Lemmens, K. Y. Choi, E. E. Kaul, C. Geibel, K. Becker, W. Brenig, R. Valenti, C. Gros, M. Johnsson, P. Millet, and F. Mila,“Evidence for an unconventional magnetic instability in spin-tetrahedra system Cu2Te2O5Br2”, Phys. Rev. Lett. 87, 227201 (2001).

[19] A. Smontara, A. Bilusić, Z. Jagličić, A. Zorko, J. Dolinšek, and H. Berger,“Anomalous thermal conductivity of single crystal Cu2Te2O5Cl2”, Appl. Magn. Reson. 29, 261 (2005).

[20] C. Gros, P. Lemmens, M. Vojta, R. Valenti, K. Y. Choi, H. Kageyama, Z. Hiroi, N. V. Mushnikov, T. Goto, M. Johnsson, and P. Millet, “Longitudinal magnon in the tetrahedral spin system Cu2Te2O5Br2 near quantum criticality”, Phys. Rev. B 67, 174405 (2003).

[21] G. H. Wannier,“Antiferromagnetism the triangular ising net”, Phys. Rev. 79, 357 (1950).

[22] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Brogolm, H. Tsunetsugu, Y. Oiu, and Y. Maeno,“Spin disorder on a triangular lattice”, Science 309, 9 (2005).

[23] B. P. Uberuaga, D. Bacorisen, R. Smith, J A. Ball, R. W. Grimes, A. F. Voter, and K. E. Sickafus,“Defect kinetics in spinels: long-time simulations of MgAl2O4, MgGa2O4 and MgIn2O4”, Phys. Rev. B 75,104116 (2007).

[24] W. Y. Ching, S. Aryal, P. Rulis, and W. Schnick,“Electronic structure and physical properties of the spinel-type phase of BeP2N4 from all-electron density functional calculations”, Phys. Rev. B 83, 155109 (2011).

[25] T. M. McQueen, D. V. West, B. Muegge, Q. Huang, K. Noble, H. W. Zandbergen, and R. J. Cava,“Frustrated ferroelectricity in niobate pyrochlores”, J. Phys. : Condens. Matter 20, 235210 (2008).

[26] K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi,“Giant magnetoresistance effect in the metal-insulator transition of pyrochlore oxide Nd2Ir2O7”, J. Phys. Soc. Jpn. 82, 023706 (2013).

[27] S. T. Bramwell, and M. J. P. Gingras,“Spin ice state I frustrated magnetic pyrochlore material’s”, Science 294, 1495 (2001).

[28] M. J. R. Hoch, P. L. Kuhns, S. Yuan, T. Besara, J. B. Whalen, T. Siegrist, A. P. Reyes, J. S. Brooks, H. Zheng, and J. F. Mitchell,“Evidence for an internal-field-induced spin-flop configuration in the extended kagome YBaCo4O7”, Phys. Rev. B 87, 064419 (2013).

[29] D. A. Huse, and A. D. Rutenberg,“Classical antiferromagnets on the Kagomé lattice”, Phys. Rev. B 45, 7536 (1992).

[30] C. C. Yeh, Master thesis,“The study of magnetodielectric behaviors in spin frustrated Cu2Te2O5X2 (X=Cl and Br) compounds”, National Sun Yat-Sen University, Taiwan (2012).

[31] R. Becker, M. Johnsson, R. K. Kremer, H.-H. Klauss, and P. Lemmens,“Crystal structure and magnetic properties of FeTe2O5X (X = Cl, Br): a frustrated spin cluster compound with a new Te(IV) coordination polyhedron”, J. Am. Chem. Soc. 128, 15469 (2006).

[32] R. Becker, and M. Johnsson,“Three new tellurite halides with unusual Te4+ coordinations and iron honeycomb lattice variants”, J. Solid State Chem. 180, 1750 (2007).

[33] D. Zhang, M. Johnsson, H. Berger, R. K. Kremer, D. Wulferding, and P. Lemmens,“Seperation of the oxide and halide part in the oxohalide Fe3Te3O10Cl due to high acidity of the cations”, Inorg. Chem. 48, 6599 (2009).

[34] D. Zhang, R. K. Kremer, P. Lemmens, K.-Y. Choi, J. Liu, M.-H. Whangbo, H. Berger, Y. Skourski, and M. Johnsson,“Crystal structure and magnetic properties of two new antiferromagnetic spin dimer compounds; FeTe3O7X ( X = Cl, Br)”, Inorg. Chem. 50, 12877 (2011).

[35] N. Aliouane, D. N. Argyriou, J. Stremfer, I. Zegkinoglou, S. Landsgesell, and M. v. Zimmermann,“Field-induced linear magnetoelastic coupling in multiferroic TbMnO3”, Phys. Rev. B 73, 020102 (2006).

[36] M. P. Singh, W. Prellier, Ch. Simon, and B. Raveau,“Magnetocapacitance effect in perovskite-superlattice based multiferroics”, Appl. Phys. Lett. 87, 022505 (2005).

[37] R. Seshadri, and N. A. Hill,“Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3”, Chem. Mater. 13, 2892 (2001).

[38] L. C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P. G. Radaelli, and S-W. Cheong,“Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5”, Phys. Rev. Lett. 93,177402 (2004).

[39] G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, and A. P. Ramirez,“Magnetically driven ferroelectric order in Ni3V2O8”, Phys. Rev. Lett. 95, 087205 (2005).

[40] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura,“Observation of skyrmions in a multiferroic material”, Science 336, 198 (2012).

[41] W. H. Li, C. W. Wang, D. Hsu, C. H. Lee, C. M. Wu, C. C. Chou, H. D. Yang, Y. Zhao, S. Chang, J. W. Lynn, and H. Berger,“Interplay between the magnetic and electric degrees of freedom in multiferroic Co3TeO6”, Phys. Rev. B 85, 094431 (2012).

[42] C. C. Chou, C. L. Huang, S. Mukherjee, Q. Y. Chen, H. Sakurai, A. A. Belik, E. Takayama-Muromachi, and H. D. Yang,“Multiple magnetic transitions in multiferroic BiMnO3”, Phys. Rev. B 80, 184426 (2009).

[43] C. P. Sun, C. L. Huang, C. C. Lin, J. L. Her, C. J. Ho, J.-Y. Lin, H. Berger, and H. D. Yang,“Colossal electroresistance and colossal magnetoresistance in spinel multiferroic CdCr2S4”, Appl. Phys. Lett. 96, 122109 (2010).

[44] M. Pregelj, O. Zaharko, A. Zorko, Z. Kutnjak, P. Jeglič, P. J. Brown, M. Jagodič, Z. Jagličić, H. Berger, and D. Arčon,“Spin amplitude modulation driven magnetoelectric coupling in the new multiferroic FeTe2O5Br”, Phys. Rev. Lett. 103, 147202 (2009).

[45] C. Kittel,“Introduction to solid state physics”, 8th edition.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code