Responsive image
博碩士論文 etd-0719114-175226 詳細資訊
Title page for etd-0719114-175226
論文名稱
Title
平衡-不平衡轉換電路之設計與平面型雙絞線之研究
Design of Balanced to Unbalanced Circuits and Study of Planar Twisted-pairs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
142
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-10-14
繳交日期
Date of Submission
2015-10-15
關鍵字
Keywords
馬遜巴倫、巴倫器、雙絞線、彎折、磁場、串音現象、不完整地平面
twisted-pair, bent, H-field, crosstalk, Ruthroff balun, Marchand balun, non-ideal ground plane
統計
Statistics
本論文已被瀏覽 5758 次,被下載 337
The thesis/dissertation has been browsed 5758 times, has been downloaded 337 times.
中文摘要
本論文於第二章探討不完整地平面(地平面上有槽孔或者有槽縫)對單端線及差動線特性的影響,發現差動線上訊號的品質並不會受到地平面的槽孔及槽縫所影響,差動線比單端線更能抵抗不完整地平面所造成的負面影響。  
  於第三章第二部分則是研究操作在超寬頻(3.1 GHz~10.6 GHz)之馬遜巴倫器與操作在5 GHz之阻抗比1:4 Ruthroff巴倫器,皆使用GIPD製程製作以達到微小化、低損耗以及高整合度的特性。我們所設計的馬遜巴倫器及Ruthroff巴倫器皆在其中一端輸出端接上一條相位補償線使得頻寬更寬。馬遜巴倫器量測結果在操作頻段內之S11皆小於-10 dB,振幅不平衡小於0.54 dB,相位不平衡小於5.8度,以及 CMRR大於24.5 dB。Ruthroff巴倫器的部分,可以使用的頻率範圍為4.5 GHz~7.8 GHz,量測結果在操作頻段內之S11皆小於-10 dB,振幅不平衡小於0.78 dB,相位不平衡小於3度,以及CMRR大於25 dB。
  於第四章第三部分則是研究使用GIPD製程的直線型、彎折型雙絞線(耦合線)之特性、雙絞線(耦合線)鄰近一條單端線及雙絞線時之串音現象以及雙絞線不同負載情況下及雙絞線不同Pitch數時之串音現象。另外也探討製作在Rogers板上之雙絞線鄰近一條單端干擾線時雙絞線的磁場強度。本論文探討TDL(Twisted Differential Line)與VTDL(Vertical Twisted Differential Line)兩種雙絞線架構彎折後的特性及串音現象。對差動電路而言,兩條線不等長時會導致共模雜訊變大,而電路對稱性會影響SCD21特性。彎折後之TDL、VTDL與耦合線的模態轉換分別小於-25.5 dB、-32.2 dB與-28.2 dB,VTDL兩條線的平衡性較佳,模態轉換特性優於TDL及耦合線。雙絞線(耦合線)之串音現象的部分,雙絞線抵抗外部干擾的能力優於耦合線,尤其以VTDL之串音現象特性最好。
Abstract
The first part chapter 2 of this thesis analyzes the effect of non-ideal ground plane for single line and differential pair. We found that the non-ideal ground plane doesn’t affect the signal quality for differential line. The differential line has great immunity to the non-ideal plane than the single line.
   The second part chapter 3 of this thesis investigates the UWB (3.1 GHz to 10.6 GHz) Marchand balun and the 5GHz Ruthroff balun which can also achieve 1:4 impedance transformer. Both of the Marchand and Ruthroff balun have a phase compensation line at one of the output port to improve the frequency band and both of the balun are produced on GIPD process to achieve compact chip size, low loss, and high integrated capatibility. The measurement results of the operation frequency for Marchand balun are S11 below -10 dB、amplitude imbalance below 0.54 dB、phase imbalance below 5.8 degree and CMRR above 24.5 dB. Similarly, the measurement results of the operation frequency for Ruthroff balun are S11 below -10 dB、amplitude imbalance below 0.78 dB、phase imbalance below 3 degree and CMRR above 25 dB.
  The third part chapter 4 of this thesis investigates the characteristics for the straight, bent twisted-pair (coupled line), and the crosstalk for a pair of twisted-pair (coupled line) when it’s beside a single line (Twisted-pair), and the crosstalk for a pair of twisted-pair when the termination port has different situation and different pitch number. Moreover, we also analyzes the H-field magnitude for a pair of twised-pair beside a single aggressor line. This thesis investigates the bent and crosstalk characteristic for two types of twisted-pair: TDL(Twisted Differential Line) and VTDL(Verticcal Twisted Differential Line). We found that the common mode noise increased when the lengths of differential line are not equal and the mode conversion became worse. The mode conversion for bent TDL, bent VTDL, and bent coupled line are below -25.5 dB, -32.2 dB, and -28.2 dB. To sum up, the VTDL has good performance on mode conversion and crosstalk than TDL and coupled line.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 xii
第一章 緒論 1
1.1 研究背景和動機 1
1.2 論文架構 3
第二章 訊號的傳輸與干擾 4
2.1 前言 4
2.2 單端訊號與差動訊號 4
2.2.1 傳輸線之特性阻抗 5
2.2.2 混合模態散射參數(Mixed-mode S-parameters) 9
2.2.3 差動訊號之傳輸 11
2.3 訊號之回流路徑(Return path) 14
2.3.1 單端傳輸線之訊號迴流路徑 15
2.3.2 差動傳輸線之訊號迴流路徑 19
2.4 串音干擾 23
2.4.1 近端串音(Near-end crosstalk, NEXT) 25
2.4.2 遠端串音(Far-end crosstalk, FEXT) 26
2.5 眼圖(Eye diagram) 27
第三章 GIPD平衡-不平衡轉換電路之設計 30
3.1 UWB馬遜巴倫器之設計 30
3.1.1 馬遜巴倫器之原理 31
3.1.2 GIPD製程介紹 35
3.1.3 超寬頻馬遜巴倫器之架構 36
3.1.4 實作與量測結果 40
3.2 Ruthroff巴倫器之設計 44
3.2.1 Ruthroff巴倫器之原理 45
3.2.2 GIPD Ruthroff巴倫器之架構 51
3.2.3 實作與量測結果 53
第四章 平面型雙絞線之設計 57
4.1 雙絞線的發展 57
4.2 耦合線與雙絞線之特性 58
4.3 GIPD平面型雙絞線 61
4.3.1 GIPD直線平面型雙絞線之設計 62
4.3.2 GIPD彎折平面型雙絞線之設計 65
4.3.3 GIPD平面型雙絞線串音現象之探討 71
4.3.4 實作與量測結果 83
4.4 PCB之平面型雙絞線 102
4.4.1 Rogers substrate平面型雙絞線設計 103
4.4.2 實作與量測結果 112
第五章 結論與未來工作 119
參考文獻 122
參考文獻 References
[1] D. G. Kam, H. Lee, and J. Kim, “A new twisted differential line structure on high-speed printed circuit boards to enhance immunity to crosstalk and external noise,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 9, pp. 411-413, Sep. 2003.
[2] Signal integrity: https://en.wikipedia.org/wiki/Signal_integrity
[3] D. G. Kam, S. Ahn, S. Baek , B. Park, M. Sung, and J. Kim, “A novel twisted differential line for high-speed on-chip interconnections with reduced crosstalk,” in Proc. Electron. Packag. Technol. Conf., Dec. 2002, pp. 180-183.
[4] I. Hatirnaz and Y. Leblebici, “Modelling and implementation of twisted differential on-chip interconnects for crosstalk noise reduction,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May. 2004, pp. V-185-V-188.
[5] J. E. Schutt-Aine, “High-frequency characterization of twisted-pair cables,” IEEE Trans. Commun., vol. 49, no. 4, pp. 598-601, Apr. 2001.
[6] D. G. Kam and J. Kim, “A novel twisted differential line on PCB: crosstalk model and its application to high-speed interconnect circuit design,” in Elect. Performance of Electron. Packag., Monterey, CA, USA, Oct. 2002, pp. 153-156.
[7] D. G. Kam, H. Lee, S. Baek, B. Park, and J. Kim, “Enhanced immunity against crosstalk and EMI using GHz twisted differential line structure on PCB,” in Proc. IEEE Int. Symp. on Electromagn. Compat., vol. 2, Minneapolis, MN, USA, Aug. 2002, pp. 643-647.
[8] D. G. Kam, H. Lee, S. Baek , B. Park, and J. Kim, “GHz twisted differential line structure on printed circuit board to minimize EMI and crosstalk noises,” in Proc. Electron. Compon. Technol. Conf. , 2002, pp. 1058-1065.
[9] D. G. Kam, H. Lee, and J. Kim, “Twisted differential line structure on high-speed printed circuit boards to reduce crosstalk and radiated emission,” IEEE Trans. Adv. Packag., vol. 27, no.4, pp. 590-596, Nov. 2004.
[10] G.-H. Shiue, W.-D. Wei, C.-M. Lin, and R.-B. Wu, “Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines,” IEEE Trans. Adv. Packag., vol. 29, no. 3, pp. 560-569, Aug. 2006.
[11] H. R. Goodarzi, M. Tayarani, and S. Khosravi, “Differential to common mode coupling in microstrip lines; calculation and improvement,” in Proc. Electromagn. Compatibil. Int. Zurich Symp., Munich, Germany, Sep. 2007, pp.293–296.
[12] C. Gazda, D. Van de Ginste, H. Rogier, R.-B. Wu, and D. De Zutter, “A wideband common-mode suppression filter for bend discontinuities in differential signaling using tightly coupled microstrips,” IEEE Trans. Adv. Packag., vol. 33, no. 4, pp. 969-978, Oct. 2010.
[13] G.-H. Shiue, W.-D. Guo, L.-S. Liu, and R.-B. Wu, “Circuit modeling and noise reduction for bent differential transmission lines,” IEEE 13th Topical Meeting on Elect. Performance of Electron. Packag., pp. 143-146, Oct. 2004.
[14] H.-Y. Chung, H.-K. Chiou, Y.-C. Hsu, T.-Y. Yang, and C.-L. Chang, “Design of step-down broadband and low-loss Ruthroff-type baluns using IPD technology,” Trans. Compon.,Packag. and Manuf. Technol., vol. 4, no. 6, pp. 967-974, Jun. 2014.
[15] C.-H. Huang, T.-S. Horng, C.-C. Wang, C.-T. Chiu, and C.-P. Hung, “Optimum design of transformer-type Marchand balun using scalable integrated passive device technology,” IEEE Trans. Packag. and Manuf. Technol., vol. 2, no. 8, pp 1370-1377, Aug. 2012.
[16] J.M. Redoute and M. Steyaert, EMC of Analog Integrated Circuit, 1st edition, Springer Netherlands, 2009.
[17] Stephen H. Hall, Garrett W. Hall, James A. McCall, High-Speed Digital System Design—A Handbook of Interconnect Theory and Design Practices, 1st edition, John Wiley & Sons Inc., 2000.
[18] Stephen C. Thierauf, Understanding Signal Integrity, 1st edition, Artech House, 2010.
[19] D. M. Pozar, Microwave Engineering, 3rd edition, John Wiley & Sons Inc.,1998.
[20] Essential Rules of Thumb:
http://bethesignal.com/wp/wp-content/uploads/2014/01/PPT-311_Essential_Rules_Thumb1.pdf
[21] W. Alan Davis, Radio Frequency Circuit Design, 2nd edition, John Wiley & Sons, 2011.
[22] W. Fan, A. Lu, L. L. Wai, and B. K. Lok, “Mixed-mode S-parameter characterization of differential structures,” in Proc. Electron. Packag. Technol. Conf. (EPTC) , Dec. 2003, pp. 533-537.
[23] Differential signal: http://en.wikipedia.org/wiki/Differential_signaling
[24] Johnson, High-speed digital design. A handbook of black magic, 1st edition, Pearson Education, 1993.
[25] Splitting Planes For Speed and Power:
http://www.ultracad.com/articles/planesplits.pdf
[26] How Does Return Current Really Return:
http://www.creativebits.ca/downloads/HOW DOES RETURN CURRENT REALLY RETURN.pdf
[27] Intersymbol interference: https://en.wikipedia.org/wiki/Intersymbol_interference
[28] P. Fornberg, M. Kanda, C. Lasek, M. Piket-May, and S. H. Hall, “The impact of a nonideal return path on differential signal integrity,” IEEE Trans. Electromag. Compat., vol. 44, no. 1, pp. 11-15, Feb. 2002.
[29] Stephen H. Hall and Howard L. Heck, Advanced Signal Integrity for High-Speed Digital Design, 1st edition, John Wiley & Sons, Inc., 2009.
[30] 楊克俊,電磁相容原理與設計技術,第一版,全華圖書,2006
[31] PRBS: http://tech.hexun.com.tw/2011-01-04/126577108.html
[32] 示波器: http://www.twintex.com.tw/product/TFG3500E.html
[33] 數位訊號產生器: http://www.hi1718.com/company/49075/products/2011109142654309.html
[34] 眼圖:
http://na.support.keysight.com/plts/help/WebHelp/Analyzing/Analyzing_Data_using_Eye_Diagrams.html#TheEye
[35] Jitter: http://www.cc.ntut.edu.tw/~wwwph/old/image/spplan/lecture/optic(17).pdf
[36] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag., vol. 4, no. 2, pp. 36-47, Jun. 2003.
[37] Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems:
https://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2002/fcc02048.pdf
[38] S. J. Parisi, “180 degrees lumped element hybrid,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, Long Beach, CA, USA, Jun. 1989, pp. 1243-1246.
[39] T. Johansen and V. Krozer, “Analysis and design of lumped element Marchand baluns,” in Proc. Microw. Int. Conf. on Radar and Wireless Commun., Wroclaw, May. 2008, pp. 1-4.
[40] C.-H Huang and T.-S Horng, “Design of integrated planar Marchand balun using physical transformer model,” in Proc. Asia Pacific Microw. Conf. (APMC), Singapore, Dec. 2009, pp 1004-1007.
[41] S.-M. Wu, W.-Y. Lin, K.-Y. Wang, C.-H. Huang, and W.-K. Yeh, “The high balance symmetric balun for WLAN and WiMAX application using the integrated passive device (IPD) technology,” in Porc. Int. Conf. ICEPT-HDP’09, Beijing, Aug. 2009, pp 14-17.
[42] F. Hettstedt, W. Stellmach, T. von Hofe, R. Knochel, and E. Quandt, “3D thin film Guanella-balun,” in Proc. German Microw. Conf. GeMiC, llmenau, Mar. 2012, pp. 1-4.
[43] J. S. Kim, “Broadband balun and phase noise measurement system design for RFIC tesing,” Doctoral Dissertation, University of Florida, 2009.
[44] K. S. Ang and I. D. Robertson, “Analysis and design of impedance-transforming planar Marchand baluns,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 402-406, Feb. 2001.
[45] Power Combiners, Impedance Transformers, and Directional Couplers:
http://www.highfrequencyelectronics.com/Dec07/HFE1207_GrebennikovPart1.pdf
[46] K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and design of miniaturized lumped-distributed impedance-transforming baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 1009-1017, Mar. 2003.
[47] C.-W. Tang and C.-Y. Chang, “A semi-lumped balun fabricated by low temperature co-fired ceramic,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, Seattle, WA, USA, Jun. 2002, pp. 2201-2204.
[48] S.-C. Tseng, C.-C. Meng, C.-H. Chang, and G.-W. Huang, “SiGe HBT Gilbert downconverter with an integrated miniaturized Marchand balun for UWB applications,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, Jun. 2007, pp. 2141–2144.
[49] X. Lan, F. Fong, M. Kintis, K. Kono, D. Yamauchi, W.-B. Luo, and D. Farkas, “An ultra-wideband balun using multi-metal GaAs MMIC technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 8, pp. 474-476, Aug. 2010.
[50] A. Abbosh, “Planar ultra-wideband balun using coupled microstrip lines,” Electron. Lett., vol. 49, no. 10, pp. 662-664, May. 2013.
[51] M. S. Mahani and R. Abhari, “A planar ultra wide band single layer microstrip balun operating from 200MHz to 10GHz,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Montreal, QC, Canada, Jun. 2012, pp. 1-3.
[52] R. F. Sobrany and I. D. Robertson, “Ruthroff transmission line transformers using multilayer technology,” in Proc. European Microw. Conf., Munich, Germany, Oct. 2003, pp. 559-562.
[53] A. K. Johnson and G. I. Zysman, “Coupled transmission line networks in an inhomogeneous dielectric medium,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 10, pp. 329-337, Oct. 1969.
[54] Admittance parameters: https://en.wikipedia.org/wiki/Admittance_parameters
[55] H.-K. Chiou and H.-Y. Chung, “2.5-7 GHz single balanced mixer with integrated ruthroff-type balun in 0.18 um CMOS technology,” Electron. Lett., vol. 49, no. 7, pp. 474-475, Mar. 2013.
[56] M. S. Mahani and R. Abhari, “A planar ultra wide band single layer microstrip BALUN operating from 200MHz to 10GHz,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Montreal, QC, Canada, Jun. 2012, pp. 1-3.
[57] W. Zhang and L. Sun, “Design and modeling for 6.6GHz IPD balun,” in Proc. Int. Conf. Commun. Technol., Jinan, China, Sep. 2011, pp.269-272.
[58] SWER: https://en.wikipedia.org/wiki/Single-wire_earth_return
[59] C. J. Kikkert and G. D. Reid, “Radiation losses from a single wire earth return power line with bends,” in Proc. ATNAC Australasian Telecommun. Netw. and Applicat. Conf., Adelaide, CA, Dec. 2008, pp. 158-162.
[60] Twisted-pair: https://en.wikipedia.org/wiki/Twisted_pair#History
[61] Twisted-pair photo: https://en.wikipedia.org/wiki/File:Twisted_pair.svg
[62] W. Sun, M. Choi, and S. Choi, “IEEE 802.11ah: a long range 802.11 WLAN at sub 1 GHz,” Journal of ICT Standardization, Vol. 1, pp. 83-108.
[63] Douglas Brooks, Signal Integrity Issues and Printed Circuit Board Design, 1st edition, Prentice Hall PTR, 2003.
[64] T.-L. Wu, C.-H. Tsai, T.-L. Wu, and T. Itoh, “A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 848-855, Apr. 2009.
[65] Microstrip, Stripline, and CPW Design:
http://www.qsl.net/va3iul/Microstrip_Stripline_CPW_Design/ Microstrip_Stripline_and_CPW_Design.pdf
[66] Primer of investigation of 90-degree, 45-degree and arched bends in differential line:
http://www.simberian.com/AppNotes/ComparisonOfDifferentialBends_2009_02.pdf
[67] Angilent Technologies: Balanced Cable Measurement using the 4-port ENA FAQs: http://na.support.keysight.com/faq/BalancedCable_FAQ.pdf
[68] 邱培銘,多層低溫共燒陶瓷共模濾波器之設計,國立交通大學電信工程學系碩士論文,民國九十四年
[69] 駐波效應:
http://140.135.72.1/~EMLab/Contains/實驗3微波1.pdf
[70] 劉又豪,應用於射頻干擾檢測之複數近場量測技術,國立中山大學電機工程學系碩士論文,民國一百零三年
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code