Responsive image
博碩士論文 etd-0719115-101356 詳細資訊
Title page for etd-0719115-101356
論文名稱
Title
巨噬細胞對血小板及幽門螺旋桿菌的內吞主要藉由免疫球蛋白途徑
Macrophage uptake of platelets-H. pylori is mainly IgG-mediated
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-08
繳交日期
Date of Submission
2015-08-21
關鍵字
Keywords
免疫球蛋白、巨噬細胞、血小板低下症、血小板、胃幽門螺旋桿菌
Helicobacter pylori (H. pylori), Platelet, Immunoglobulin G (IgG), Macrophage, Thrombocytopenia
統計
Statistics
本論文已被瀏覽 5708 次,被下載 0
The thesis/dissertation has been browsed 5708 times, has been downloaded 0 times.
中文摘要
血小板的重要生理功能之一是能夠在傷口處形成血栓,達到止血的目的。而近來研究顯示,血小板在先天免疫中也扮演著重要角色。我們對於血小板和幽門螺旋桿菌間的興趣起源於一些血小板低下症的人同時也有幽門螺旋桿菌的感染;而這類病患有些人在除去胃幽門螺旋桿菌後,血小板數目會回升。雖然先前的研究已經知道有些幽門螺旋桿菌菌株會和血小板黏合,而引起血小板的活化,產生凝集反應以及血小板的凋亡反應。然而,對於血小板在參與先天免疫的巨噬細胞除去胃幽門螺旋桿菌所扮演的角色以及它們和血小板低下症的關係,尚未完全明瞭;因此本研究即進一步探討此關係。我們首先觀察以胃幽門螺旋桿菌或以胃幽門螺旋桿菌的脂多醣 (LPS) 感染血小板,結果它們都會增加血小板漿膜上磷脂絲氨酸 (PS) 的表現量,而這也是巨噬細胞在吞噬過程辨識的分子標記之一。接著,在未加入血清的環境中,以胃幽門螺旋桿菌感染血小板,可以小幅度的促進巨噬細胞對於血小板的吞噬;但如以脂多醣 (LPS) 刺激血小板,卻會減少巨噬細胞對於血小板的吞噬作用。最後我們探討胃幽門螺旋桿菌的抗體對吞噬作用的影響。結果顯示當血清中有胃幽門螺旋桿菌抗體時,巨噬細胞對被胃幽門螺旋桿菌黏合的血小板會產生明顯的吞噬作用。因此,我們確認當血小板被胃幽門螺旋桿菌感染時,經由胃幽門螺旋桿菌抗體參與的先天免疫反應,啟動了巨噬細胞的吞噬作用,而這也是導致血小板數目減少的一種途徑。先前我們實驗室已經提出的有關胃幽門螺旋桿菌的感染會造成血小板凝集和凋亡反應,再加上本研究證實的巨噬細胞吞噬作用的綜合結果,應該可以明確的提供醫生,對於長期罹患不知原因的血小板低下症而且有胃幽門螺旋桿菌感染的患者,在診斷與治療上一個新的方向。
Abstract
One of the most important physiological functions of platelets (PLTs) is clotting in the wound. Recent studies have revealed that PLTs also play important roles in innate immunity. We’re interested in the association between H. pylori and PLTs due to patients with thrombocytopenia often accompanied with H. pylori infection. There is growing evidence showed that the PLTs count recovered after H. pylori eradication therapy. It’s known that adhesion of some strains of H. pylori to PLT leaded to PLT activation, aggregation and apoptosis. However, the role of PLT in the innate immunity of macrophage eliminating H. pylori, and in the association between phagocytosis and H. pylori-induced thrombocytopenia remains unclear. We therefore investigated the association between the H. pylori infected PLTs and the uptake of PLTs by macrophage in this studies. Firstly, it’s observed that the expression of phosphatidylserine (PS), a molecular marker for macrophage clearance, increased on washed PLTs in response to H. pylori and lipopolysaccharide (LPS) of H. pylori stimulation. Secondly, the uptake of H. pylori infected washed PLTs by macrophage was slightly enhances, but it was slightly decreased when LPS was used instead of H. pylori. Finally, we investigated the role of H. pylori antibody. Results showed that H. pylori positive sera significantly enhanced the phagocytosis of washed PLTs in response to some strains of H. pylori infection. Our results suggest the increased uptake of PLTs-H. pylori by macrophage was mainly IgG-mediated. It would lead to decrease in platelet counts. Our previous data on H. pylori-induced PLTs aggregation and apoptosis and the results of this study will provide further understandings on the pathogenesis of H. pylori-induced thrombocytopenia. It will further assist physicians in diagnosis and making therapeutic decisions on the H. pylori infected patients with unknown reason thrombocytopenia.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
縮寫表 ix
壹、 緒論 1
一、 血小板 1
1-1血小板生成 1
1-2血小板的組成 2
1-3血小板的功能 2
1-4血小板與免疫反應 (Immune response) 4
1-5血小板的相關疾病 5
二、 胃幽門螺旋桿菌 (Helicobacter pylori) 6
2-1 胃幽門螺旋桿菌的感染機轉 6
2-2 胃幽門螺旋桿菌的毒性因子 7
2-3 胃幽門螺旋桿菌的感染率與相關疾病 9
貳、 研究目的 10
參、 實驗材料與方法 13
一、 細胞培養 (Cell cuture) 13
1-1 實驗材料 13
1-2細胞培養液配置 13
1-3 實驗方法 14
二、 血小板及血清的製備 (Platelet and serum preparation) 15
2-1實驗材料 15
2-2實驗溶液配製 15
2-3實驗方法 15
三、 幽門螺旋桿菌之製備 (H. pylori preparation) 16
3-1實驗材料 16
3-2實驗方法 16
四、 分析磷脂絲氨酸表現 (Phosphatidylserine exposure) 實驗 17
4-1實驗材料 17
4-2實驗試劑配製 17
4-3實驗方法 18
五、 體外吞噬實驗 (In vitro Phagocytosis) 18
5-1實驗材料 18
5-2實驗溶液配製 19
5-3實驗方法 19
肆、 結果 22
一、 H. pylori 誘發血小板的 PS 表現 22
二、 LPS 誘發血小板的 PS 表現 24
三、 H. pylori與 LPS 對於吞噬血小板的影響 26
四、 含 H. pylori 抗體的血清能夠增強吞噬血小板的作用 28
伍、討論 30
陸、 參考文獻 34
柒、 未來工作 40
捌、 附錄 41

圖次
圖1-1、血小板生成示意圖 1
圖1-2、血小板活化與止血機轉 4
圖1-3、胃幽門螺旋桿菌感染胃黏膜層的機轉。 7
圖2-1、血小板感染 H. pylori 時,PS 的表現量。 10
圖2-2、血小板感染 H. pylori 時,細胞膜突起的現象。 11
圖2-3、血小板感染 H. pylori 時,caspase 的活化現象。 12
圖4-1、當 H. pylori 感染血小板時,血小板細胞膜上 PS 表現量。 23
圖4-2、當 H. pylori LPS 感染血小板時,血小板細胞膜上 PS 表現量。 25
圖4-3、當 H. pylori 與 LPS 感染血小板時,巨噬細胞對血小板的吞噬。 27
圖4-4、含 H. pylori 抗體的血清會調節吞噬血小板的作用。 29

表次
表8-1、H. pylori 誘發血小板的 PS 表現 (原始資料)…………………………… 41
表8-2、LPS 誘發血小板的 PS 表現 (原始資料)………………………………..... 42
表8-3、H. pylori 與 LPS 對於吞噬血小板的影響 (原始資料)…………………... 43
表8-4、含 H. pylori 抗體的血清能夠增強吞噬血小板的作用 (原始資料)……... 44
參考文獻 References
Alm, R. A., Ling, L.-S. L., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R, Noonan, B., Guild, B. C., deJonge, B.L., Carmel, G., Tummino, P. J., Caruso, A., Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang, Q., Taylor, D. E., Vovis, G. F., Trust, T. J. (1999). Correction: Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 397(6721), 719-719.
Alonzo, M. T. G., Lacuesta, T. L. V., Dimaano, E. M., Kurosu, T., Lady-anne, C. S., Mapua, C. A., Akeda, Y., Matias, R. R., Kuter, D. J., Nagata, S., Natividad, F. F., Oishi, K. (2012). Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections. Journal of Infectious Diseases, 205(8), 1321-1329.
Amulic, B., & Hayes, G. (2011). Neutrophil extracellular traps. Current Biology, 21(9), R297-R298.
Asahi, A., Kuwana, M., Suzuki, H., Hibi, T., Kawakami, Y., & Ikeda, Y. (2006). Effects of a Helicobacter pylori eradication regimen on anti-platelet autoantibody response in infected and uninfected patients with idiopathic thrombocytopenic purpura. Haematologica, 91(10), 1436-1437.
Asahi, A., Nishimoto, T., Okazaki, Y., Suzuki, H., Masaoka, T., Kawakami, Y., Ikeda, Y., Kuwana, M. (2008). Helicobacter pylori eradication shifts monocyte Fcγ receptor balance toward inhibitory FcγRIIB in immune thrombocytopenic purpura patients. The Journal of clinical investigation, 118(8), 2939.
Asahi, M., Azuma, T., Ito, S., Ito, Y., Suto, H., Nagai, Y., Tsubokawa, M., Tohyama, Y., Maeda, S., Omata, M., Suzuki, T., Sasakawa, C. (2000). Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. The Journal of experimental medicine, 191(4), 593-602.
Aslam, R., Speck, E. R., Kim, M., Crow, A. R., Bang, K. A., Nestel, F. P., Ni, H., Lazarus, A. H., Freedman, J., Semple, J. W. (2006). Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood, 107(2), 637-641.
Atherton, J. C., Cao, P., Peek, R. M., Tummuru, M. K., Blaser, M. J., & Cover, T. L. (1995). Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori association of specific vacA types with cytotoxin production and peptic ulceration. Journal of Biological Chemistry, 270(30), 17771-17777.
Austin, S. K. (2009). Haemostasis. Medicine, 37(3), 133-136.
Blair, P., & Flaumenhaft, R. (2009). Platelet α-granules: basic biology and clinical correlates. Blood reviews, 23(4), 177-189.
Blander, J. M., & Medzhitov, R. (2004). Regulation of phagosome maturation by signals from toll-like receptors. Science, 304(5673), 1014-1018.
Blaser, M. J., & Atherton, J. C. (2004). Helicobacter pylori persistence: biology and disease. Journal of Clinical Investigation, 113(3), 321.
Brown, L. M. (1999). Helicobacter pylori: epidemiology and routes of transmission. Epidemiologic reviews, 22(2), 283-297.
Byrne, M. F., Kerrigan, S. W., Corcoran, P. A., Atherton, J. C., Murray, F. E., Fitzgerald, D. J., & Cox, D. M. (2003). Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology, 124(7), 1846-1854.
Cervantes, F. (2011). Management of essential thrombocythemia. ASH Education Program Book, 2011(1), 215-221.
Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., Patel, K. D., Chakrabarti, S., McAvoy, E., Sinclair, G. D., Keys, E. M., Allen-Vercoe, E., Devinney, R., Doig, C. J., Green, F. H., Kubes, P. (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature medicine, 13(4), 463-469.
Clemetson, K. J., Clemetson, J. M., Proudfoot, A. E., Power, C. A., Baggiolini, M., & Wells, T. N. (2000). Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood, 96(13), 4046-4054.
Eyre, L., & Gamlin, F. (2010). Haemostasis, blood platelets and coagulation. Anaesthesia & Intensive Care Medicine, 11(6), 244-246.
Flock, J., Fröman, G., Jönsson, K., Guss, B., Signäs, C., Nilsson, B., Raucci, G., Höök, M., Wadström, T., Lindberg, M. (1987). Cloning and expression of the gene for a fibronectin-binding protein from Staphylococcus aureus. The EMBO journal, 6(8), 2351.
Fujimoto, Y., Iwata, M., Imakita, N., Shimoyama, A., Suda, Y., Kusumoto, S., & Fukase, K. (2007). Synthesis of immunoregulatory Helicobacter pylori lipopolysaccharide partial structures. Tetrahedron Letters, 48(37), 6577-6581.
Galmiche, A., Rassow, J., Doye, A., Cagnol, S., Chambard, J. C., Contamin, S., de Thillot, V., Just, I., Ricci, V., Solcia, E., Van Obberghen, E., Boquet, P. (2000). The N‐terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. The EMBO journal, 19(23), 6361-6370.
Gasbarrini, A., Franceschi, F., Tartaglione, R., Landolfi, R., Pola, P., & Gasbarrini, G. (1998). Regression of autoimmune thrombocytopenia after eradication of Helicobacter pylori. The Lancet, 352(9131), 878.
Gerhard, M., Rad, R., Prinz, C., & Naumann, M. (2002). Pathogenesis of Helicobacter pylori infection. Helicobacter, 7(s1), 17-23.
Golebiewska, E. M., & Poole, A. W. (2014). Platelet secretion: From haemostasis to wound healing and beyond. Blood reviews.
Guruge, J. L., Falk, P. G., Lorenz, R. G., Dans, M., Wirth, H.-P., Blaser, M. J., Berg, D. E., Gordon, J. I. (1998). Epithelial attachment alters the outcome of Helicobacter pylori infection. Proceedings of the National Academy of Sciences, 95(7), 3925-3930.
Hamzeh-Cognasse, H., Damien, P., Chabert, A., Pozzetto, B., Cognasse, F., & Garraud, O. (2015). Platelets and infections–complex interactions with bacteria. Frontiers in immunology, 6.
Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A., & Nagata, S. (2002). Identification of a factor that links apoptotic cells to phagocytes. Nature, 417(6885), 182-187.
Handin, R. I. (2005). Inherited platelet disorders. ASH Education Program Book, 2005(1), 396-402.
Hasni, S., Ippolito, A., & Illei, G. (2011). Helicobacter pylori and autoimmune diseases. Oral diseases, 17(7), 621-627.
Hessey, S., Spencer, J., Wyatt, J., Sobala, G., Rathbone, B., Axon, A., & Dixon, M. (1990). Bacterial adhesion and disease activity in Helicobacter associated chronic gastritis. Gut, 31(2), 134-138.
Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., & Hatakeyama, M. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295(5555), 683-686.
Hoffmann, J. J. (2014). Reticulated platelets: analytical aspects and clinical utility. Clinical Chemistry and Laboratory Medicine (CCLM), 52(8), 1107-1117.
Jayachandran, M., Brunn, G. J., Karnicki, K., Miller, R. S., Owen, W. G., & Miller, V. M. (2007). In vivo effects of lipopolysaccharide and TLR4 on platelet production and activity: implications for thrombotic risk. Journal of Applied Physiology, 102(1), 429-433.
Kameyoshi, Y., Dörschner, A., Mallet, A., Christophers, E., & Schröder, J. (1992). Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. The Journal of experimental medicine, 176(2), 587-592.
Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature immunology, 11(5), 373-384.
Keane, C., Tilley, D., Cunningham, A., Smolenski, A., Kadioglu, A., Cox, D., Jenkinson, H. F., Kerrigan, S. (2010). Invasive Streptococcus pneumoniae trigger platelet activation via Toll‐like receptor 2. Journal of Thrombosis and Haemostasis, 8(12), 2757-2765.
Komura, H., Miksa, M., Wu, R., Goyert, S. M., & Wang, P. (2009). Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. The Journal of Immunology, 182(1), 581-587.
Kuwana, M. (2014). Helicobacter pylori-associated immune thrombocytopenia: clinical features and pathogenic mechanisms. World journal of gastroenterology: WJG, 20(3), 714.
Kuwana, M., Okazaki, Y., & Ikeda, Y. (2009). Splenic macrophages maintain the anti‐platelet autoimmune response via uptake of opsonized platelets in patients with immune thrombocytopenic purpura. Journal of Thrombosis and Haemostasis, 7(2), 322-329.
López, J. A. (2013). The platelet Fc receptor: a new role for an old actor. Blood, 121(10), 1674-1675.
Leunk, R., Johnson, P., David, B., Kraft, W., & Morgan, D. (1988). Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. Journal of medical microbiology, 26(2), 93-99.
Maeda, S., Akanuma, M., Mitsuno, Y., Hirata, Y., Ogura, K., Yoshida, H., Shiratori, Y., Omata, M. (2001). Distinct mechanism of Helicobacter pylori-mediated NF-κB activation between gastric cancer cells and monocytic cells. Journal of Biological Chemistry, 276(48), 44856-44864.
Mandell, L., Moran, A. P., Cocchiarella, A., Houghton, J., Taylor, N., Fox, J. G., Wang, T. C., Kurt-Jones, E. A. (2004). Intact gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via toll-like receptor 2 but not toll-like receptor 4. Infection and immunity, 72(11), 6446-6454.
Marshall, B., & Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. The Lancet, 323(8390), 1311-1315.
McDevitt, D., Francois, P., Vaudaux, P., & Foster, T. (1994). Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Molecular microbiology, 11(2), 237-248.
McGee, D., & Mobley, H. (1999). Mechanisms of Helicobacter pylori infection: bacterial factors Gastroduodenal Disease and Helicobacter Pylori (pp. 155-180): Springer.
McNicol, A., & Israels, S. J. (1999). Platelet dense granules: structure, function and implications for haemostasis. Thrombosis research, 95(1), 1-18.
Miajlovic, H., Zapotoczna, M., Geoghegan, J. A., Kerrigan, S. W., Speziale, P., & Foster, T. J. (2010). Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology, 156(3), 920-928.
Miksa, M., Wu, R., Dong, W., Das, P., Yang, D., & Wang, P. (2006). Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis. Shock, 25(6), 586-593.
Ní Eidhin, D., Perkins, S., Francois, P., Vaudaux, P., Höök, M., & Foster, T. J. (1998). Clumping factor B (ClfB), a new surface‐located fibrinogen‐binding adhesin of Staphylococcus aureus. Molecular microbiology, 30(2), 245-257.
Neunert, C. E. (2013). Current management of immune thrombocytopenia. ASH Education Program Book, 2013(1), 276-282.
Nijland, R., Hofland, T., & van Strijp, J. A. (2014). Recognition of LPS by TLR4: Potential for Anti-Inflammatory Therapies. Marine drugs, 12(7), 4260-4273.
Nurden, A. T. (2011). Platelets, inflammation and tissue regeneration. Thrombosis and haemostasis, 105(1), S13.
Odenbreit, S., Gebert, B., Püls, J., Fischer, W., & Haas, R. (2001). Interaction of Helicobacter pylori with professional phagocytes: role of the cag pathogenicity island and translocation, phosphorylation and processing of CagA. Cellular microbiology, 3(1), 21-31.
Odenbreit, S., Püls, J., Sedlmaier, B., Gerland, E., Fischer, W., & Haas, R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 287(5457), 1497-1500.
Peek Jr, R. M., Miller, G. G., Tham, K. T., Perez-Perez, G. I., Zhao, X., Atherton, J. C., & Blaser, M. J. (1995). Heightened inflammatory response and cytokine expression in vivo to cagA+ Helicobacter pylori strains. Laboratory investigation; a journal of technical methods and pathology, 73(6), 760-770.
Peek, R. M., & Blaser, M. J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Reviews Cancer, 2(1), 28-37.
Peerschke, E. I., Murphy, T. K., & Ghebrehiwet, B. (2003). Activation-dependent surface expression of gC1qR/p33 on human blood platelets. Thromb Haemost, 89(2), 331-339.
Plummer, C., Wu, H., Kerrigan, S. W., Meade, G., Cox, D., & Ian Douglas, C. (2005). A serine‐rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. British journal of haematology, 129(1), 101-109.
Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zähringer, U., Seydel, U., Di Padova, F. (1994). Bacterial endotoxin: molecular relationships of structure to activity and function. The FASEB Journal, 8(2), 217-225.
Salama, N. R., Hartung, M. L., & Müller, A. (2013). Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nature Reviews Microbiology, 11(6), 385-399.
Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F., & Backert, S. (2002). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. Journal of Biological Chemistry, 277(9), 6775-6778.
Semple, J. W., Italiano, J. E., & Freedman, J. (2011). Platelets and the immune continuum. Nature Reviews Immunology, 11(4), 264-274.
Shapiro, A. (2000). Platelet function disorders1. Haemophilia, 6(1), 120-127.
Shiota, S., Suzuki, R., & Yamaoka, Y. (2013). The significance of virulence factors in Helicobacter pylori. Journal of digestive diseases, 14(7), 341-349.
Skoda, R. C. (2009). Thrombocytosis. ASH Education Program Book, 2009(1), 159-167.
Smith, M. F., Mitchell, A., Li, G., Ding, S., Fitzmaurice, A. M., Ryan, K., Crowe, S., Goldberg, J. B. (2003). Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-κB activation and chemokine expression by epithelial cells. Journal of Biological Chemistry, 278(35), 32552-32560.
Stasi, R. (2012). Immune thrombocytopenia: pathophysiologic and clinical update. Paper presented at the Seminars in thrombosis and hemostasis.
Stasi, R., Willis, F., Shannon, M. S., & Gordon-Smith, E. C. (2009). Infectious causes of chronic immune thrombocytopenia. Hematology/oncology clinics of North America, 23(6), 1275-1297.
Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W. J., & Covacci, A. (2002). c‐Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Molecular microbiology, 43(4), 971-980.
Stein, M., Rappuoli, R., & Covacci, A. (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proceedings of the National Academy of Sciences, 97(3), 1263-1268.
Stephens, J., Larkins, A., James, R., & Rathbone, B. (1996). Production of a monoclonal antibody against the 128 kDa (CagA) protein of Helicobacter pylori. Journal of immunological methods, 190(2), 163-169.
Suerbaum, S., & Michetti, P. (2002). Helicobacter pylori infection. New England Journal of Medicine, 347(15), 1175-1186.
Swanson, J. A., & Hoppe, A. D. (2004). The coordination of signaling during Fc receptor-mediated phagocytosis. Journal of leukocyte biology, 76(6), 1093-1103.
Takahashi, T., Yujiri, T., Shinohara, K., Inoue, Y., Sato, Y., Fujii, Y., Okubo, M., Zaitsu, Y., Ariyoshi, K., Nakamura, Y., Nawata, R., Oka, Y., Shirai, M., Tanizawa,Y. (2004). Molecular mimicry by Helicobacter pylori CagA protein may be involved in the pathogenesis of H. pylori‐associated chronic idiopathic thrombocytopenic purpura. British journal of haematology, 124(1), 91-96.
Tang, Y.-Q., Yeaman, M. R., & Selsted, M. E. (2002). Antimicrobial peptides from human platelets. Infection and immunity, 70(12), 6524-6533.
Tomb, J.-F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A,, Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M., Venter, J. C. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388(6642), 539-547.
Tombola, F., Morbiato, L., Del Giudice, G., Rappuoli, R., Zoratti, M., & Papini, E. (2001). The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. Journal of Clinical Investigation, 108(6), 929.
Torok, A. M., Bouton, A. H., & Goldberg, J. B. (2005). Helicobacter pylori induces interleukin-8 secretion by Toll-like receptor 2-and Toll-like receptor 5-dependent and-independent pathways. Infection and immunity, 73(3), 1523-1531.
van Doorn, L.-J., Figueiredo, C., Sanna, R., Pena, S., Midolo, P., Ng, E. K., Atherton, J. C., Blaser, M. J., Quint, W. G. (1998). Expanding allelic diversity of Helicobacter pylori vacA. Journal of clinical microbiology, 36(9), 2597-2603.
Van Doorn, L. J., Figueiredo, C., Mégraud, F., Pena, S., Midolo, P., Queiroz, D. M. D. M., Carneiro, F., Vanderborght, B., Pegado, M. D., Sanna, R., De Boer, W., Schneeberger, P. M., Correa, P., Ng, E. K., Atherton, J., Blaser, M. J., Quint, W. G. (1999). Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology, 116(4), 823-830.
Yamaoka, Y., Kita, M., Kodama, T., Sawai, N., & Imanishi, J. (1996). Helicobacter pylori cagA gene and expression of cytokine messenger RNA in gastric mucosa. Gastroenterology, 110(6), 1744-1752.
Yeh, J.-J., Tsai, S., Wu, D.-C., Wu, J.-Y., Liu, T.-C., & Chen, A. (2010). P-selectin–dependent platelet aggregation and apoptosis may explain the decrease in platelet count during Helicobacter pylori infection. Blood, 115(21), 4247-4253.
Zhang, G., Han, J., Welch, E. J., Richard, D. Y., Voyno-Yasenetskaya, T. A., Malik, A. B., Du, X., Li, Z. (2009). Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. The Journal of Immunology, 182(12), 7997-8004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.72.224
論文開放下載的時間是 校外不公開

Your IP address is 18.117.72.224
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code