Responsive image
博碩士論文 etd-0719115-124451 詳細資訊
Title page for etd-0719115-124451
論文名稱
Title
以尤拉及拉格朗日法分析擺動機翼之動態失速現象
Eulerian and Lagrangian Based Investigation for the Dynamic Stall Phenomenon over a Pitching Airfoil
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-29
繳交日期
Date of Submission
2015-08-19
關鍵字
Keywords
拉格朗日連結結構、尤拉觀察法、後緣渦旋、前緣渦旋、擺動機翼、動態失速
Dynamic stall, Pitching airfoil, Eulerian viewpoints, Lagrangian Coherent Structures (LCS), Leading edge vortex (LEV), Trailing edge vortex (TEV)
統計
Statistics
本論文已被瀏覽 5738 次,被下載 570
The thesis/dissertation has been browsed 5738 times, has been downloaded 570 times.
中文摘要
本研究模擬單一翼片擺動於二維非穩態流場中所產生的動態失速現象,以尤拉及拉格朗日兩種不同的觀點對模擬之結果進行分析。尤拉觀察法係以渦度場與流線的變化中觀察前緣渦旋(leading edge vortex,LEV)與後緣渦旋(trailing edge vortex,TEV)的演變過程,將分為渦度η與無因次化之速度梯度張量的第二不變量Λ兩種不同形式進行分析,在本研究中將點出渦度η的缺點,並改用Λ得以更完整呈現LEV與TEV的演變,以及從動態失速現象發生前後壓力場之變化,找出其渦旋與升力變化之關係,並由Λ傳輸方程探討動態失速延遲期間對流、壓力與擴散各項的影響。拉格朗日觀察法則是使用拉格朗日連結結構(Lagrangian coherent structures,LCS),藉此區分出具有不同動態行為的區域,由LCS的變化並配合質點群追蹤找出這些被LCS分隔開的區域內質點動態行為的差異之處。藉由LCS與尤拉方法一同分析擺動機翼之流場讓我們更了解動態失速現象。
Abstract
This study investigates two-dimensional flow over a pitching airfoil by numerical simulation. The simulation results are analyzed by two different viewpoints based on Eulerian and Lagrangian. In Eulerian viewpoints, we have observed that the evolution of leading edge vortex (LEV) and the trailing edge vortex (TEV) by the vorticity η and the normalized second invariant of the velocity gradient tensor Λ. In this study, we have suggested that Λ can present the rotation strength of the LEV and TEV better than the vorticity, and the relationship between the vortex interaction and the variation of lift force are evaluated by the pressure field. Furthermore, the convective, pressure, and diffusion effects during the dynamic stall are discussed by the transport equation of Λ. In Lagrangian viewpoints, we have used Lagrangian coherent structures (LCS) to distinguish regions with different dynamic behavior and observed the variation of LCS by particle group tracking. The underlying flow dynamics of LEV and TEV is observed under this methodology. This study shows that better understandings of the dynamic stall of a pitching foil are acquired by using the LCS approach and the Eulerian method together.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖次 vi
表次 vii
符號說明 viii
第一章緒論 1
1.1 研究背景與目的 1
1.2 文獻回顧 2
1.2.1 動態失速 2
1.2.2 紊流模型 5
1.2.3 拉格朗日連結結構 7
第二章研究方法 8
2.1 數值方法與紊流模型 8
2.2計算相關設定 11
2.2.1邊界條件 11
2.2.2機翼運動模式 12
2.2.3網格設定 13
2.2.4 數值結果與實驗之驗證 14
2.3 渦度η 與 Λ 以及Λ傳輸方程 16
2.3.1 渦度η 與 Λ 16
2.3.2 Λ傳輸方程 16
2.4 拉格朗日連結結構分析法 18
第三章分析-尤拉觀察法 21
3.1 渦度場 22
3.2 壓力場 25
3.3 Λ傳輸方程 26
第四章分析-拉格朗日觀察法 29
第五章結論與建議 35
參考文獻 37
參考文獻 References
[1] Wang, S., Indham, D. B., Ma, L., Pourkashanian, M., Tao, Z., 2012. Turbulence modeling of deep dynamic stall at relatively low Re. Journal of Fluids and Structures, 33, 191–209.
[2] Ekaterinaris, J. A., Platzer, M. F., 1997. Computational prediction of airfoil dynamic stall. Prog. Aerospace Science and Technology, 33, 759-846.
[3] Mulleners, K., Kindler, K., Raffel, M., 2012. Dynamic stall on a fully equipped helicopter model. Aerospace Science and Technology, 19(1), 72-76.
[4] Gompertz, K., Kumar, P., Jensen, C. D., Peng, D., Gregory, J. W., Bons, J. P., 2011. Modification of a transonic blowdown wind tunnel to produce oscillating freestream Mach number, AIAA Journal, 49(11), 2555-2563 .
[5] Carr, L. W., 1988. Progress in analysis and prediction of dynamic stall. Journal of Aircraft, 25(1), 6-17.
[6] Noll R. B., Ham N. D., 1982. Effect of dynamics stall on SWECS. Journal of Solar Energy Engineering, 104(2), 96-101.
[7] Ferreira, C. S., van Kuik, G., van Bussel, G., & Scarano, F., 2009. Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids, 46(1), 97-108.
[8] Shyy, W., Lian, Y., Tang, J., Liu, H., 2011. Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press, New York.
[9] Shyy, W., Aono, H., Kang, C. K., 2013. An Introduction to Flapping Wing Aerodynamics. Cambridge University Press, New York.
[10] Gormont, R. E., 1973. A Mathematical Model of Unsteady Aerodynamics and Radial Flow for Application to Helicopter Rotors. U.S. Army AMRDL Eustis Directorate Report TR, 72-67.
[11] Harris, F. D., Tarzanin, F. J., Fisher, R. K., 1970. Rotor high-speed performance; theory vs. test. Journal of the American Helicopter Society, 15(3), 35-44.
[12] Doerffer, P., Szulc, O., 2008. Numerocal simulation of model helicopter rotor in hover. Task Quarterly, 12 (3-4), 227-236.
[13] Dawes, W. N., 2007. Turbomachinery computational fluid dynamics: asymptotes and paradigm shifts. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1859), 2553-2585.
[14] McCroskey, W. J., Carr, L. W., McAlister, K. W., 1976. Dynamic stall experiments on oscillating airfoils. AIAA Journal, 14(1), 57-63.
[15] McAlister, K. W., Carr, L. W. McCroskey, W. J., 1978. Dynamic stall experiments on the NACA 0012 airfoil. NASA Technical Paper 1100.
[16] Leishman, J. G., 1990. Dynamic stall experiments on the NACA 23012 aerofoil. Experiment in Fluid, 9(1-2), 49-58.
[17] Wang, S., Indham, D. B., Ma, L., Pourkashanian, M., Tao, Z., 2010. Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Computers and Fluids, 39(9), 1529-1541.
[18] Niu Y. Y., Chang C. C., 2013.How do aerodynamic forces of the pitching rigid and flexible airfoils evolve ? AIAA Journal, 51(12), 2946-2952.
[19] Lee, T., Gerontakos, P., 2004. Investigation of flow over an oscillating airfoil. Journal of Fluid Mechanics, 512, 313–341.
[20] Sharma, D. M., Poddar, K., 2013. Investigation of dynamic stall characteristics for flow past an oscillating airfoil at various reduced frequencies by simultaneous PIV and surface pressure measurements. PIV13; 10th International Symposium on Particle Image Velocimetry, Delft, The Netherlands, July 1-3, 2013. Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, and Faculty of Aerospace Engineering.
[21] Gharali, K., Johnson, D. A., 2013. Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. Journal of Fluids and Structures, 42, 228-244.
[22] Leu, T. S., Yu, J. M., Hu, C. C., Miau, J. J., Liang, S. Y., Li, J. Y., Cheng, J. C., Chen, S. J., 2012. Experimental study of free stream turbulence effects on dynamic stall of pitching airfoil by using particle image velocimetry. Applied Mechanics and Materials, 225, 103-108.
[23] Loftin, L. K., Smith, H. A., 1949. Aerodynamic Characteristics of 15 NACA Airfoil Sections at Seven Reynolds Numbers from 0.7×106 to 9.0×106. National Advisory Committee for Aeronautics.
[24] Althaus, D., Wortmann, F.X., 1981. Stuttgarter Profilkatalog: Messergebnisse aus dem Laminarwindkanal des Instituts für Aerodynamik und Gasdynamik der Universität Stuttgart. F. Vieweg.
[25] Ramsay, R. R., Hoffman, M. J., Gregorek, G. M., 1995. Effects of Grit Roughness and Pitch Qscillations on the S809 Airfoil. Airfoil Performance Report.
[26] Ramsey, R. R., Gregorek, G. M., 1995. Effects of Grit Roughness and Pitch Oscillations on the S813 Airfoil. Airfoil Performance Report.
[27] Choudhry, A., Leknys, R., Arjomandi, M., Kelso, R., 2014. An insight into the dynamic stall lift characteristics. Experimental Thermal and Fluid Science, 58, 188-208.
[28] Kang, C. K., Aono, H., Sik Baik, Y., Bernal, L. P., Shyy, W., 2012. Fluid dynamics of pitching and plunging flat plate at intermediate Reynolds numbers. AIAA Journal, 51(2), 315-329.
[29] Visbal, M. R., 2014. Analysis of the onset of dynamic stall using high-fidelity large-eddy simulations. AIAA SciTech 52nd Aerospace Sciences Meeting National Harbor, Maryland.
[30] Shyy, W., Lian, Y., Tang, J., Viieru, D., Liu, H., 2007. Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.
[31] McCroskey, W. J., McAlister, K. W., Carr, L. W., Pucci, S. L., Lambert, O., Indergrand, R. F., 1981. Dynamic stall on advanced airfoil sections. Journal of the American Helicopter Society, 26(3), 40-50.
[32] Visbal, M. R., 1990. Dynamic stall of a constant-rate pitching airfoil. Journal of Aircraft, 27(5), 400-407.
[33] Chandrasekhara, M. S., & Carr, L. W., 1990. Flow visualization studies of the Mach number effects on dynamic stall of an oscillating airfoil. Journal of Aircraft, 27(6), 516-522.
[34] Gardner, A. D., Richter, K., Mai, H., Altmikus, A. R. M., Klein, A., Rohardt, C. H., 2013. Experimental investigation of dynamic stall performance for the EDI-M109 and EDI-M112 airfoils. Journal of the American Helicopter Society, 58(1), 1-13.
[35] Mulleners, K., Le Pape, A., Heine, B., Raffel, M., 2012. The dynamics of static stall. 16th Int Symp on Applications of Laser Techniques to Fluid Mechanics.
[36] McAlister, K. W., Pucci, S. L., McCroskey, W. J., Carr, L. W., 1982. An Experimental Study of Dynamic Stall on Advanced Airfoil Sections. Volume 2: Pressure and Force Data. NASA Technical Memorandum 84245.
[37] McCroskey, W. J., McAlister, K. W., Carr, L. W., Pucci, S. L., 1982. An Experimental Study of Dynamic Stall on Advanced Airfoil Sections. Volume 1: Summary of the Experiment. NASA Technical Memorandum 84245.
[38] Zanotti, A., Gibertini, G., Grassi, D., and Spreafico, D., 2013. Wake measurements behind an oscillating airfoil in dynamic stall conditions. ISRN Aerospace Engineering.
[39] Ahmad, K. A., Abdullah, M. Z., Watterson, J. K., 2010. Numerical modelling of a pitching airfoil. Journal Mekanikal, 30, 37-47.
[40] Martinat, G., Braza, M., Hoarau, Y., Harran, G., 2008. Turbulence modeling of the flow past a pitching NACA0012 airfoil at 105 and 106 Reynolds numbers. Journal of Fluids and Structures, 24, 1294-1303.
[41] Haller, G., Yuan, G., 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3), 352-370.
[42] Shadden, S. C., Lekien, F., Marsden, J. E., 2005. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena, 212(3), 271-304.
[43] Wilson, M. M., Peng, J., Dabiri, J. O., Eldredge, J. D., 2009. Lagrangian coherent structures in low Reynolds number swimming. Journal of Physics: Condensed Matter, 21(20), 204105.
[44] Peng, J., Dabiri, J. O., 2010. A potential-flow, deformable-body model for fluid-structure interactions with compact vorticity : application to animal swimming measurements. Animal Locomotion, 17-26.
[45] Lekien, F., Leonard, N., 2004. Dynamically consistent Lagrangian coherent structures. Experimental Chaos, 742, 132-139.
[46] Tang, J. N., Tseng, C. C., Wang, N. F., 2012. Lagrangian-based investigation of multiphase flows by finite-time Lyapunov exponents. Acta Mechanica Sinica, 28(3), 612-624.
[47] Cardwell, B. M., Mohseni, K., 2008. Vortex shedding over a two-dimensional airfoil: Where the particles come from. AIAA Journal, 46(3), 545-547.
[48] Lipinski, D., Cardwell, B., Mohseni, K., 2008. A Lagrangian analysis of a two-dimensional airfoil with vortex shedding. Journal of Physics A: Mathematical and Theoretical, 41(34), 344011.
[49] Brunton, S., Rowley, C., 2009. Modeling the unsteady aerodynamic forces on small-scale wings. AIAA Paper, 1127, 2009.
[50] Theodorsen, T., Mutchler, W. H., 1935. General theory of aerodynamic instability and the mechanism of flutter. NACA Advance Restricted Report.
[51] Issa, R. I., 1982. Solution of the implicit discretized fluid flow equations by operator splitting. Journal of Computational Physics, 62, 40-65.
[52] Launder, B. E., Spalding, D. B., 1974. The numerical computation of turbulent flow. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289.
[53] Shyy, W., Thakur, S.S., Ouyang, H., Liu, J., Blosch, E., 2005. Computational Techniques for Complex Transport Phenomena. Cambridge University Press.
[54] Wilcox, D. C., 1998. Turbulence modeling for CFD. La Canada, CA: DCW industries, 2, 103-217.
[55] Menter, F. R. 1993, "Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows", AIAA Paper, 2906, 1993.
[56] Menter, F. R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605.
[57] Cheng, Y. E., 2014. Lagrangian-Based Investigation for Dynamic Stall. Master thesis, National Sun Yat-sen University.
[58] Jeong, J., Hussain, F., 1995. On the identification of a vortex. Journal of Fluid Mechanics, 285, 69-94.
[59] Davidson, P. A., 2004. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
[60] Haller, G., 2005. An objective definition of a vortex. Journal of Fluid Mechanics, 525, 1-26.
[61] Senocak, I., 2002. Computational Methodology for the Simulation of Turbulent Cavitating Flows. Ph.D. thesis, University of Florida.
[62] Huang, B., Zhao, Y., Wang, G., 2014. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Computers & Fluids, 92, 113-124.
[63] Ji, B., Luo, X., Arndt, R. E., Wu, Y., 2014. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction. Ocean Engineering, 87, 64-77.
[64] Chen, C. J., 1997. Fundamentals of Turbulence Modelling. CRC Press.
[65] Tseng, C. C., Cheng, Y. E., 2015. Numerical investigations of the vortex interactions for a flow over a pitching foil at different stages. Journal of Fluids and Structures.(Accept)
[66] Elert, G., 2007. The Chaos Hypertextbook. Online. http://www.hypertextbook. com/chaos/.
[67] Runge–Kutta methods. 2015, August 10. Retrieved from Wikipedia, The Free Encyclopedia.https://en.wikipedia.org/w/index.php?title=Runge–Kutta_methods&oldid=675499963
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code