Responsive image
博碩士論文 etd-0719115-132401 詳細資訊
Title page for etd-0719115-132401
論文名稱
Title
以數值方法模擬二維與三維紊流空蝕流場
Numerical Investigation for Two- and Three-Dimensional Turbulent Cavitating Flows
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-29
繳交日期
Date of Submission
2015-08-19
關鍵字
Keywords
過濾器、空蝕、泛用性、側向射流、迴向射流
filter, side-entrant jet, generality, re-entrant jet, cavitation
統計
Statistics
本論文已被瀏覽 5694 次,被下載 571
The thesis/dissertation has been browsed 5694 times, has been downloaded 571 times.
中文摘要
空蝕經常發生在許多水力裝置之中,造成劇烈的壓力變化,並導致噪音、震動等現象發生。本研究採用RANS (Reynolds-averaged Navier-Stokes)中的standard k-ε紊流模型、RNG (Re-Normalization Group) k-ε紊流模型以及PANS (Partially-Averaged Navier-Stokes) 紊流模型,並使用user defined function之功能寫入Zwart的空蝕模型與過濾器(filter),模擬二維Clark Y水翼、NACA66水翼以及三維Delft twist 11 水翼在水中所發生的空蝕現象。
本研究利用四種不同的過濾器尺寸,配合一百組空蝕模型中的蒸發、凝結係數,應用在攻角8度的Clark Y水翼,並逐漸降低流場的空蝕數,將數值模擬結果之平均升、阻力係數和氣泡運動頻率與實驗數據比較,確立可用係數值域。接下來,固定所選用的係數,置換水翼幾何形狀,並與其它的紊流模型所得之數值結果相比較,以證明係數的泛用性(generality)。
接下來,Clark Y水翼的空蝕流場結構也被分析。為了流場結構在數值上的準確性,本研究改變紊流模型,而係數的泛用性也不再被要求。最後,基於在二維空蝕流場的模擬經驗,進一步模擬三維Delft twist 11 水翼之空蝕流場,分析迴向射流與側向射流對流場結構的影響。在結果中發現,除了由於氣泡尾端附近的壓差造成的迴向射流,水翼兩側的壓差、來流與迴向射流的碰撞也促進側向射流的產生,影響整個氣泡結構。
Abstract
Cavitation models and turbulent models are widely used to predict cavitation phenomenon in numerical simulations. The coefficients which dominate the evaporation and condensation rates in cavitation models are often empirical and tunable. To reduce the sensitivity and raise the generality of the coefficients, unsteady cloud cavitation cases on 2D Clark Y and NACA66 hydrofoils were simulated with different combinations of empirical coefficients and turbulent treatments. The Reynolds-Averaged Navier-Stokes (RANS) and Partially Averaged Navier-Stokes (PANS) turbulent approach was coupled with a homogeneous cavitation model to calculate the time-averaged lift coefficient, time-averaged drag coefficient and frequency of cavitation shedding behavior. The suitable empirical coefficients are presented in this study.
An unsteady 3D simulation on a Delft twist 11 hydrofoil was also performed. The re-entrant jets and structure of the cavitating flow around the hydrofoil was investigated. The results on time-averaged lift coefficient, three dimensional cavity structure and shedding frequency agreed well with experimental observation. Analysis of the flow field reveals that secondary shedding is an omen of primary shedding and induced by a pair of side-entrant jets. These side-entrant jets promote re-entrant jets to move further upstream. Eventually, the attached cavity is cut off by the re-entrant jets, leading to the primary shedding.
目次 Table of Contents
論文審定書 i
謝 誌 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 viii
符號說明 ix
第一章 緒論 1
1.1前言 1
1.2文獻回顧 1
1.2.1空蝕現象 1
1.2.2實驗觀察 3
1.2.3數值模擬 3
1.2.3.1 空蝕模型 3
1.2.3.2紊流模型 4
第二章 研究方法 6
2.1數值方法與統御方程式 6
2.2空蝕模型 8
2.3紊流模型 10
2.3.1 Standard k-ε model 10
2.3.2 RNG k-ε model 12
2.3.3 PANS model 12
2.3.4 Filter-based model (FBM) 13
2.3.5 Density-correction-based model (DCM) 13
2.3.6 Hybrid FBM and DCM (Hybrid model) 14
2.4計算區域與邊界條件 15
2.4.1二維翼型 15
2.4.2三維翼型 16
第三章 結果與討論 19
3.1泛用性 19
3.2流場結構 23
3.2.1二維流場 Clark Y翼型 23
3.2.2三維流場 Delft twist 11 翼型 25
3.2.2.1 次氣泡脫離 27
3.2.2.2 主氣泡脫離 27
第四章 結論與建議 39
參考文獻 41
參考文獻 References
[1] W. Lauterborn, “Optic cavitation,” J. De Physique. Colloque C8 (1979), pp.273.
[2] E.A. Weitendorf, “On the history of propeller cavitation and cavitation tunnels,” CAV2001: 4th Int. Symposium on Cavitation (2001), pp. 20–23.
[3] L. M. Gray, D. S. Greeley, “Source level model for propeller blade rate radiation for the world's merchant fleet,” J. Acoust. Soc. Am., 67, 2 (1980), pp. 516–522.
[4] S. S. Cook, “Parsons Memorial Lecture: Sir Charles Parsons and Marine Propulsion,” The Institution of Mechanical Engineers, 140, 1 (1938), pp. 133–155.
[5] 劉昭忠, 牛仰堯, 洪健元, “內流場空蝕現象之數值初步模擬,” 中華理工學刊,第一卷, 第一期 (2003) , pp.113–120.
[6] G. Y. Wang, I. Senocak, W. Shyy, T. Ikohagi, S. Cao “Dynamics of attached turbulent cavitating flows,” Aerospace Sciences, 37 (2001), pp. 551–581.
[7] J. B. Leroux, J. A. Astolfi, J. Y. Billard “An experimental study of unsteady partial cavitation,” J. Fluids Eng. 126 (2004), pp.94–101.
[8] X. Escaler, E. Egusquiza, M. Farhat, F. Avellan, M. Coussirat “Detection of cavitation in hydraulic turbines,” Mech. Systems and Signal, 20 (2006), pp.983–1007.
[9] C. C. Tseng, W. Shyy “Turbulence modeling for isothermal and cryogenic cavitation,” 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition (2009), 2009–1215.
[10] C. C. Tseng, Y. J. Wei, G. Y. Wang, W. Shyy “Modeling of turbulent, isothermal and cryogenic cavitation under attached conditions,” Acta Mechanica Sinica, 26 (2010), pp. 325–353.
[11] C. C. Tseng “Modeling of turbulent cavitating flows,” PhD Thesis, University of Michigan (2010).
[12] S. Park, S. H. Rhee “Computational analysis of turbulent super-cavitating flow around a two-dimensional wedge-shaped cavitator geometry,” Computers and Fluids, 70 (2012), pp. 73–85.
[13] L. Azar “Cavitation in ultrasonic cleaning and cell disruption,” Controlled Environments (2009).
[14] J. P. Franc “Partial cavity instabilities and re-entrant jet,” CAV2001:4th Int. Symposium on Cavitation (2001).
[15] R. T. Knapp, J. W. Daily, F. G. Hammit “Cavitation,” McGraw-Hill (1970).
[16] M. Callenaere, J.P. Franc, J.M. Michel, M. Riondet “The cavitation instability induced by the development of a re entrant jet,” J. Fluid Mech., 444 (2001), pp. 223–256.
[17] R. A. Furness, S. P. Hutton “Experimental and theoretical studies of two-dimensional fixed-type cavities,” J. Fluids Eng., 97 (1975), pp. 515–522.
[18] J. L. Reboud, B. Stutz, O. Coutier “Two-phase flow structure of cavitation : experiment and modelling of unsteady effects,” CAV2001: Third Int. Symposium on Cavitation (1998)
[19] Y. Kawanami, H. Kato, H. Yamaguchi, Y. Tagaya, M. Tanimura “Mechanism and control of cloud cavitation” J. Fluids Eng., 119 (1997), pp. 788–795
[20] E. J. Foeth “The structure of three-dimensional sheet cavitation,” Mechanical Maritime and Materials Engineering. Delft University of Technology, Wageningen, The Netherlands (2008).
[21] Y. Zhang, S. Gopalan, J. Katz “On the flow structure and turbulence in the closure region of attached cavitation,” 22th Symposium on Naval Hydrodynamics (1998).
[22] K. R. Laberteaux, S. L. Ceccio “Partial cavity flows. Part 1. Cavities forming on models without spanwise variation,” J. Fluid Mech. 431 (2001), pp. 1–41.
[23] M. Dular , R. Bachert , B. Stoffel , B. Širok “Experimental evaluation of numerical simulation of cavitating flow around hydrofoil,” European J. Mech. B/Fluids, 24 (2005), pp. 522–538.
[24] A. K. Singhal, M. M. Athavale, H. Y. Li, Y. Jiang “Mathematical basis and validation of the full cavitation model,” J. Fluids Eng. 124 (2002), pp. 617–624.
[25] P. J. Zwart, A. G. Gerber, T. Belamri “A two-phase flow model for predicting cavitation dynamics,” Int. Conference on Multiphase Flow, 152 (2004).
[26] W. X. Yuan, J. Sauer, G. H. Schnerr “Modeling and computation of unsteady cavitation flows in injection nozzles,” 1st Int. Colloq. Microhydrodynamics, Paris, 2 (2001), pp. 383–394.
[27] D. C. Liu, F. W. Hong, F. Zhao, Z. R. Zhang “The CFD analysis of propeller sheet cavitation,” Eighth Int. Conference on Hydrodynamics, France (2008).
[28] C.Y. Li, S. L. Ceccio, “Interaction of single travelling bubbles with the boundary layer and attached cavitation,” J. Fluids Mech. 322 (1996), pp. 329–353.
[29] S. Frikha, O. Coutier-Delgosha, J. A. Astolfi “Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section,” Int. J. Rotating Machinery, 146234 (2008).
[30] B. Huang, G. Y. Wang, H. T. Yuan “A cavitation model for cavtating flow simulations,” Ninth Int. Conference on Hydrodynamics, Shanghai, 11–15 (2010).
[31] G. N. Coleman, R. D. Sandberg “A Primer on Direct Numerical Simulation of Turbulence- Methods, Procedures and Guidelines,” Tech. report, School of Engineering Sciences, University of Southampton (2010).
[32] J. Smagorinsky “General circulation experiments with the primitive equations,” Mon. Wea. Rev. 91, 3, Washington, D.C. (1963), pp. 99–164.
[33] F. Nicoud, F. Ducros “Subgrid-scale stress modelling based on the square of the velocity gradient tensor,” Flow, Turbul. Combust. 62, 183 (1999).
[34] O. Coutier-Delgosha, J. L. Reboud, Y. Delannoy “ Numerical simulation of the unsteady behavior of cavitating flows,” Int. J. Numer. Meth. Fluids, 42 (2003), pp. 527–548.
[35] S. T. Johansen, J. Y. Wu, W. Shyy “Filter-based unsteady RANS computations,” Int. J. Heat and Fluid Flow,25 (2004), pp.10–21.
[36] G. Y. Wang, B. Huang, B. Zhang “k-ε based turbulence models for simulation of cloud cavitating flows,” Modern Physics Letters, 24, 13 (2010).
[37] Y. J. Wei, C. C. Tseng, G. Y. Wang “Turbulence and cavitation models for time-dependent turbulent cavitating flows,” Acta Mech. Sin. 27, 4 (2011), pp. 473–487
[38] S. S. Girimaji “Partially-averaged Navier-Stokes model for turbulence a Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method,” J. Applied Mech. 73 (2006), pp.413–421.
[39] J.M. Ma, S.H. Peng, L. Davidson, F.J. Wang “A low Reynolds number variant of partially-averaged Navier–Stokes model for turbulence,” Int. J. Heat and Fluid Flow, 32 (2011), pp. 652–669.
[40] C. S. Song, S. O. Park “Numerical simulation of flow past a square cylinder using Partially-Averaged Navier–Stokes model,” J. Wind Engineering and Industrial Aerodynamics, 97 (2009), pp. 37–47.
[41] V. Yakhot, S. Thangam, T. B. Gatski, S. A. Orszag, C. G. Speziale “development of turbulence models for shear flows by a double expansion technique,” NASA ICASE Report, 91–65 (1991).
[42] L. C. Zhuo, G. Z. Ji, X. S. Ben “A comparative study of omega rsm and RNG k– model for the numerical simulation of a hydrocyclone,” J. Chem. Chem. Eng. Iran, 33, 3 (2014).
[43] O. Coutier-Delgosha, R. Fortes-Patella, J. L. Reboud “ Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation,” J. Fluids Eng. 125 (2003), pp. 38–45.
[44] B. Ji, X. W. Luo, Y. L. Wu, X. X. Peng, Y. L. Duan “Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil,” Int. J. Multiphase Flow, 51 (2013), pp. 33–43.
[45] Y. J. Wei, C. C. Tseng, G. Y. Wang “Turbulence and cavitation models for time-dependent turbulent cavitating flows,” Acta Mech. Sin. 27, 4 (2011), pp. 473–487.
[46] H. Rouse, J. S. McNown “Cavitation and pressure distribution : head forms at zero angle of yaw,” State University of Iowa Engineering Bulletin, Ames, IA (1948).
[47] Y. S. Shen, P. E. Dimotakis “The influence of surface cavitation on hydrodynamic forces,” 22nd American Towing Tank Conference, St Johns, NF, August (1989).
[48] G. Y. Wang, B. Zhang, B. Huang, M. Zhang “Unsteady dynamics of cloudy cavitating flows around a hydrofoil,” 7th International Symposium on Cavitation, CAV2009, 9 (2009), pp.1–8.
[49] X. W. Luo, B. Ji, Y. Zhang, H. Y. Xu “Cavitating flow over a mini hydrofoil,” CHIN. PHYS. LETT. 29, 1 (2012).
[50] J. B. Leroux, O. Coutier-Delgosha, J. A. Astolfi “A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil,” 5th Int. Symposium on Cavitation, GS, 9, 6 (2003).
[51] A. Ducoin, B. Huang, Y. L. Young “Numerical modeling of unsteady cavitating flows around a stationary hydrofoil,” Int. J. Rotating Machinery, 215678 (2012).
[52] E. J. Foeth, C. W. H. van Doorne, T. van Terwisga, B. Wieneke “Time resolved PIV and flow visualization of 3D sheet cavitation,” Exp. Fluids, 40 (2006), pp. 503–513.
[53] N.N. Mansour, J. Kim, P. Moin “Near-wall k– turbulence modeling,” NASA Technical Memorandum, 89461 (1987).
[54] 王儷潔, 曾建洲, “空蝕與紊流模型之最佳化研究以及比較,” 碩士論文, 中山大學機械與機電工程學系 (2013).
[55] C. C. Tseng, L. J. Wang “Investigations of empirical coefficients of cavitation and turbulence model through steady and unsteady turbulent cavitating flows,” Computer and Fluids, 103,1 (2014), pp. 262–274.
[56] B. Ji, X. W. Luo, R. E. A. Arndt, Y. L. Wu “Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction,” Ocean Eng. 87 (2014), pp. 64–77.
[57] D. Q. Li, M. Grekula, P. Lindell, “Towards numerical prediction of unsteady sheet cavitation on hydrofoils,” J. Hydrodynamics, 22 (2010), pp. 741–746.
[58] R.E. Bensow “Simulation of the unsteady cavitation on the the delft twist11 foil using RANS, DES and LES,” 2nd Int. Symposium on Marine Propulsors, Hamburg, Germany (2011).
[59] B. Ji, X. W. Luo, X. X. Peng, Y. L. Wu. “Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil,” J. Hydrodynamics, 25, 4 (2013), pp. 510–519.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code