Responsive image
博碩士論文 etd-0719115-135710 詳細資訊
Title page for etd-0719115-135710
論文名稱
Title
以分子動力學模擬鐵碳鉻鉬塊材金屬玻璃之結構與機械性質
The structural and mechanical properties of Fe-Cr-Mo-C bulk metallic glasses by the molecular dynamics simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-10
繳交日期
Date of Submission
2015-08-19
關鍵字
Keywords
密度泛函理論、機械性質、分子動力學、金屬玻璃、第二最鄰近修正式原子鑲嵌法
2NN modified embedded-atom method, Mechanical properties, Density functional theory, Molecular dynamics, Metallic glasses
統計
Statistics
本論文已被瀏覽 5631 次,被下載 781
The thesis/dissertation has been browsed 5631 times, has been downloaded 781 times.
中文摘要
本研究將透過分子動力學模擬探討鐵-鉻-鉬-碳(Fe-Cr-Mo-C)塊材金屬玻璃之機械與結構性質,並選用第二最鄰近修正式原子鑲嵌法(second-nearest neighbor modified embedded-atom method, 2NN MEAM) 勢能函數描述鐵-鉻-鉬-碳原子之間的相互作用。再者,透過密度泛函理論計算勢能函數所需之參考數據並且結合force-matching(FM)方法擬合出適合的Fe54Cr16Mo12C18 塊材金屬玻璃的勢能參數。藉由所取得準確的勢能參數結合 basin-hopping(BH)方法便可建構Fe54Cr16Mo12C18 之非晶模型,之後再利用分子動力學理論去模擬此塊材金屬玻璃受到張應力下的結構變化以及得到應力應變的資訊。
從應力應變曲線可求得楊氏模數約為139 GPa,且曲線也透露出該塊材金屬玻璃具有很大的塑性變形區間,顯示此研究材料具良好的延展性。由局部應力分析看出該塊材金屬玻璃材料受張力變形時,剪切帶的形成非常均勻,且受拉伸破壞後的斷裂角度 (θT) 為50°,與實驗預測拉伸斷裂角度 45°~ 90° 區間相符合。最後再用HA鍵型指數法(Honeycutt-Andersen index,HA index)來分析 Fe54Cr16Mo12C18 塊材金屬玻璃材料受到張應力時的結構變化以及塑性行為。
Abstract
The mechanical properties and structural properties of Fe-Cr-C-Mo bulk metallic glasses have been investigated by molecular dynamics (MD) simulation with the 2NN modified embedded-atom method (2NN MEAM) potential which be used to model the atomic interactions among Fe, Cr, C, and Mo atoms. Furthermore, the reference data were obtained from the density functional theory (DFT) calculations. The parameter sets of binary element of Fe-Cr, Fe-Mo, Fe-C, Cr-Mo, Cr-C and Mo-C were fitted by force-matching (FM) method. Finally, these parameter sets of MEAM were further applied in generating Fe54Cr16Mo12C18 amorphous structures by basin-hopping (BH) method for conducting tensile simulations to get the stress-strain profiles. The mechanical properties and deformation mechanism, such as elastic modulus, plastic/elastic deformation mechanism and local strain distribution at different strains, were further investigated by the MD simulation.
According to stress-strain profiles, the estimated Young’s modulus of Fe54Cr16Mo12C18 bulk metallic glass is about 139 GPa. It also shows that this bulk metallic glass possess excellent ductility because of large plastic region. Local strain distribution was used to analyze the deformation mechanism, and the results reveal that shear bands form homogeneously and the tensile fracture angle (θT) is about 50 degree which is agreement with experimental result of 45°< θT < 90°. Finally, Honeycutt-Andersen (HA) index were used to investigate the plastic/elastic deformation mechanism of Fe54Cr16Mo12C18 BMG under the tensile test.
目次 Table of Contents
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖次 vii
表次 ix
第一章 緒論 I
1.1研究背景與介紹 1
1.2文獻回顧 5
1.3 研究目的 7
1.4論文架構 8
第二章 理論基礎及方法 9
2.1密度泛函理論(Density Functional Theory) 9
2.1.1電子密度 10
2.1.2湯瑪士-費米理論 (Thomas-Fermi Theory) 10
2.1.3霍恩貝格-科恩理論 (Hohenberg-Kohn Theory) 10
2.1.4科恩-沈方程式 (Kohn–Sham equation) 11
2.1.5交換相關函數(Exchange-Correlation Function) 12
2.2勢能函數 13
2.2.1原子間作用勢能 13
2.2.2擬合勢能參數 15
2.2.3 Basin-Hopping (BH) method 16
2.3分子靜力學理論 18
2.3.1 LBFGS法 18
2.3.2火炎演算法 20
2.3.3共軛梯度法 21
2.4分子動力學理論 23
2.4.1積分法則 23
2.4.2諾斯-胡佛恆溫法(Nosé-Hoover thermostat) 24
2.4.3時間步階選取 25
2.5結構分析 27
2.5.1 HA鍵型指數法 27
2.5.2原子級應力分析 28
2.5.3區域應變分析 31
2.6週期邊界的處理 32
2.7鄰近原子表列數值方法 33
2.7.1截斷半徑法 33
2.7.2 Verlet List表列法 34
2.7.3 Cell Link表列法 36
2.7.4 Verlet List結合Cell Link表列法 37
2.8 模擬流程 38
第三章 結果與討論 41
3.1 擬合勢能參數 42
3.1.1 尋找最佳DFT設定及建立reference data 42
3.1.2 參數擬合結果 54
3.2 模型建立及分析 58
3.2.1 試驗之物理模型建構 58
3.2.2 試驗之物理模型分析 59
3.3 拉伸試驗與機械性質探討 65
3.3.1 拉伸模型建立 65
3.3.2 試驗結果分析 66
第四章 結論與建議 73
4.1 結論 73
4.2 建議與未來展望 75
參考文獻 76
參考文獻 References
[1] S. H. Liang, Y. Dai, J. H. Li, and B. X. Liu, "Glass Forming Region of Cu-Ti-Hf Ternary Metal System Derived from the n-Body Potential through Molecular Dynamics Simulation," Journal of Physical Chemistry B, 114, 9540-9545, 2010.
[2] Nassima Seghairi, Badis Bendjemil, Gabriel Lavorato, Alberto Castellero, Marcello Baricco, "Preparation and Characterization of Fe-Based Metallic Glasses with Pure and Raw Elements," CHIN. PHYS. LETT., 29, 118102, 2012.
[3] H. S. Wang, H. G. Chen, J. S. C. Jang, and M. S. Chiou, "Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si-0.5 bulk metallic glass welding," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 528, 338-341, 2010.
[4] J. P. Chu, J. C. Huang, J. S. C. Jang, Y. C. Wang, and P. K. Liaw, "Thin film metallic glasses: Preparations, properties, and applications," Jom, 62,19-24,2010.
[5] J. Jing, A. Kramer, R. Birringer, H. Gleiter, and U. Gonser, "Modified Atomic-Stucture in a Pd-Fe-Si Nanoglass - A Mossbauer Study," Journal of Non-Crystalline Solids, 113, 167-170, 1989.
[6] R. Raghavan, K. Boopathy, R. Ghisleni, M. A. Pouchon, U. Ramamurty, and J. Michler, "Ion Irradiation Enhances the Mechanical Performance of Metallic Glasses," Scripta Materialia, 62, 462-465, 2010.
[7] A. Makino, T. Kubota, C. Chang, M. Makabe, and A. Inoue, "Fe-Si-B-P Bulk Metallic Glasses with High Magnetization and Excellent Magnetic Softness," Journal of Magnetism and Magnetic Materials, 320, 2499-2503, 2008.
[8] W. Klement, R. H. Willens, and P. Duwez, "Non-Crystalline Stucture In Solidified Gold-Silicon Alloys," Nature, 187, 869-870, 1960.
[9] A. Inoue, "High-Strength Bulk Amorphous Alloys with Low Critical Cooling Rates," Materials Transactions Jim, 36, 866-875, 1995.
[10] J. Q. Wang, J. Y. Qin, X. N. Gu, Y. F. Zheng, and H. Y. Bai, "Bulk Metallic Glasses Based on Ytterbium and Calcium," Journal of Non-Crystalline Solids, 3357, 1232-1234, 2011.
[11] Q. K. Jiang, G. Q. Zhang, L. Yang, X. D. Wang, K. Saksl, H. Franz, R. Wunderlich, H. Fecht, and J. Z. Jiang, "La-based Bulk Metallic Glasses with Critical Diameter up to 30 mm," Acta Materialia, 55, 4409-4418, 2007.
[12] C. L. Qiu, Q. Chen, L. Liu, K. C. Chan, J. X. Zhou, P. P. Chen, and S. M. Zhang, "A Novel Ni-free Zr-based Bulk Metallic Glass with Enhanced Plasticity and Good Biocompatibility," Scripta Materialia, 55, 605-608, 2006.
[13] Mingxiao Zhang, Anding Wang, and Baolong Shen, "Enhancement of Glass-forming Ability of Fe-based Bulk Metallic Glasses with High Saturation Magnetic Flux Density," AIP Advances, 2, 022169, 2012.
[14] Ryusuke Hasegawa, "Applications of Amorphous Magnetic Alloys in Electronic Devices," Journal of Non-Crystalline Solids, 287, 405-412, 2001.
[15] Y.B. Wang, H.F. Li, Y. Cheng, S.C. Wei, Y.F. Zheng, "Corrosion Performances of a Nickel-free Fe-based Bulk Metallic Glass in Simulated Body Fuids," Electrochemistry Communications, 11, 2187–2190, 2009.
[16] H. Zohdi, H.R. Shahverdi, S.M.M. Hadavi, "Effect of Nb Addition on Corrosion Behavior of Fe-based Metallic Glasses in Ringer's Solution for Biomedical Applications," Electrochemistry Communications, 13, 840-843, 2011.
[17] C. Zhang, K.C. Chan, Y. Wu, L. Liu, " Pitting Initiation in Fe-based Amorphous Coatings," Acta Materialia, 60, 4152–4159, 2012.
[18] M. Niinomi and M. Nakai, "Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone," International Journal of Biomaterials, 2011, 1-10, 2011.
[19] Carlos Alberto Caldas de Souza, Claudomiro Bolfarini , Walter José Botta Jr., Luiz Rogério Pinho de Andrade Lima , Marcelo Falcão de Oliveira , Claudio S. Kiminami , " Corrosion Resistance and Glass Forming Ability of Fe47Co7Cr15M9Si5B15Y2 (M=Mo, Nb) Amorphous Alloys," Mat. Res., 16, 1294-1298, 2013.
[20] W. Pilarczyk, R. Nowosielski, A. Januszka, "Structure And Properties of Fe-Cr-Mo-C Bulk Metallic Glasses Obtained by Die Casting Method, “ Journal of Achievements in Materials and Manufacturing Engineering, 42, 81-87, 2010.
[21] X. J. Han and H. Teichler, "Liquid-to-glass Transition in Bulk Glass-forming Cu60Ti20Zr20 Alloy by Molecular Dynamics Simulations," Physical Review E, 75, 061501, 2007.
[22] S. W. Kao, C. C. Huang, and T. S. Chin, "Simulation of Reduced Glass Transition Temperature of Cu-Zr Alloys by Molecular Dynamics," Journal of Applied Physics, 105, 064913, 2009.
[23] Y. C. Lo, J. C. Huang, S. P. Ju, and X. H. Du, "Atomic Structure Evolution of Zr-Ni During Severe Deformation by HA Pair Analysis," Physical Review B, 76, 024103, 2007.
[24] A. Franceschetti, S. J. Pennycook, and S. T. Pantelides, "Oxygen Chemisorption on Au Nanoparticles," Chemical Physics Letters, 374, 471-475, 2003.
[25] G. H. Ryu, S. C. Park, and S. B. Lee, "Molecular Orbital Study of the Interactions of CO Molecules Adsorbed on a W(111) Surface," Surface Science, 427-28, 419-425, 1999.
[26] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Physical Review B, 136, 864-871, 1964.
[27] W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, 140, A1133, 1965.
[28] W. Wood and F. Parker, "Monte Carlo Equation of State of Molecules Interacting with the Lennard‐Jones Potential. I. A Supercritical Isotherm at about Twice the Critical Temperature," The Journal of Chemical Physics, 27, 720-733, 1957.
[29] G. Lewis and C. Catlow, "Potential Models for Ionic Oxides," Journal of Physics C: Solid State Physics, 18, 1149, 1985.
[30] V. N. Koparde and P. T. Cummings, "Molecular Dynamics Simulation of Titanium Dioxide Nanoparticle Sintering," The Journal of Physical Chemistry B, 109, 24280-24287, 2005.
[31] M. S. Daw, S. M. Foiles, and M. I. Baskes, "The Embedded-atom Method: A Review of Theory and Applications," Materials Science Reports, 9, 251-310, 1993.
[32] M. A. Karolewski, "Tight-Binding Potentials for Sputtering Simulations with FCC and BCC Metals," Radialion Eeffects & Defects in Solids, 153, 239-255, 2001.
[33] M. Ishimaru, S. Munetoh, and T. Motooka, "Generation of amorphous silicon structures by rapid quenching: A molecular-dynamics study," Physical Review B, 56, 15133, 1997.
[34] M. Baskes, "Modified embedded-atom Potentials for Cubic Materials and Impurities," Physical Review B, 46, 2727, 1992.
[35] B.-J.Lee and M.Baskes,"Second Nearest-neighbor Modified Embedded atom method Potential," Physical Review B, 62, 8564, 2000.
[36] F. Ercolessi and J. B. Adams, "Interatomic Potentials from 1st-Principles Calculations the Force-Matching Method," Europhysics Letters, 26, 583-588, 1994.
[37] D. J. Wales and J. P. K. Doye, "Global Optimization by Basin-hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms," Journal of Physical Chemistry A, 101, 5111-5116, 1997.
[38] D. C. Liu and J. Nocedal, "On the Limited Memory Bfgs Method for Large-Scale Optimization," Mathematical Programming, 45, 503-528, 1989.
[39] S. Hamad, C. R. A. Catlow, S. M. Woodley, S. Lago, and J. A. Mejias, "Structure and Stability of Small TiO2 Nanoparticles," Journal of Physical Chemistry B, 109, 15741-15748, 2005.
[40] W. W. Hager and H. C. Zhang, "A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search," Siam Journal on Optimization, 16, 170-192, 2005.
[41] L. Zhang, W. J. Zhou, and D. H. Li, "Some Descent Three-term Conjugate Gradient Methods and Their Global Convergence," Optimization Methods & Software, 22, 697-711, 2007.
[42] W. Quapp, "A Growing String Method for The Reaction Path Way Defined by a Newton Trajectory," Journal of Chemical Physics, 122, 174106, 2005.
[43] H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters III, "Digital image correlation using Newton-Raphson method of partial differential correction," Experimental Mechanics, 29, 261-267, 1989.
[44] C. G. Broyden, "Convergence of Single-Rank Quasi-Newton Methods," Mathematics of Computation, 24, 365-382, 1970.
[45] R. Fletcher, "A New Approach to Variable Metric Algorithms," Computer Journal, 13, 317-322, 1970.
[46] D. Goldfarb, "A Family of Variable-Metric Methods Derived by Variational Means," Mathematics of Computation, 24, 23-26, 1970.
[47] D. F. Shanno, "Conditioning of Quasi-Newton Methods for Function Minimization," Mathematics of Computation, 24, 647-656, 1970.
[48] P. A. T. Olsson, S. Melin, and C. Persson, "Atomistic Simulations of Tensile and Bending Properties of Single-crystal bcc Iron Nanobeams," Physical Review B, 76, 224112, 2007.
[49] E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and P. Gumbsch, "Structural Relaxation Made Simple," Physical Review Letters, 97, 170201, 2006.
[50] N. Andrei, "Scaled Memoryless BFGS Preconditioned Conjugate Gradient Algorithm for Unconstrained Optimization," Optimization Methods & Software, 22, 561-571, 2007.
[51] B. J. O. Teleman, S. Engstrom, "A Molecular-dynamics Simulation of a Water Model with Intramolecular Defgrees of Freedom," Mol. Phys., 60, 193-203, 1987.
[52] S. Nose, "A Unified Formulation of the Constant Temperature Molecular dynamics Methods," J. Chem. Phys., 81, 511-519, 1984.
[53] S. C. M.S. Lee, D.G. Kanhere, "First-principles Investigation of Finite temperature Behavior in Small Sodium Clusters," J. Chem. Phys., 123, 164310, 2005.
[54] M. S. L. S.M. Ghazi, D.G. Kanhere, " The Effects of Electronic Structure and Charged State on Thermodynamic Properties: An Ab Initio Molecular Dynamics Investigations on Neutral and Charged Clusters of Na-39, Na-40, and Na-41," J. Chem. Phys.,128, 104701, 2008.
[55] S. N. a. C. S. N. Chandra, "Local Elastic Properties of Carbon Nanotubes in the Presence of Tone-wales Defects," Physical Review B, 69, 094101, 2004.
[56] M. H. N. Tokita, C. Azuma and T. Dotera, "Voronoi Space Division of a Polymer: Topological Effects, Free Volume, and Surface end Segregation," Journal of Chemical Physics, 120, 496-505, 2004.
[57] J. D. Honeycutt and H. C. Andersen, "Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters," Journal of Physical Chemistry, 91, 4950-4963, 1987.
[58] N. Chandra, S. Namilae, and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects," Physical Review B, vol. 69, 094101, 2004.
[59] H. C. Hsu, J. H. Chien, J. S. Huang, L. M. Chu, and S. L. Fu, "Nanoscale Bondability between Cu-Al Intermetallic Compound for Cu Wirebonding," Electronics Packaging (ICEP), 2014 International Conference on, 618-622, 2014.
[60] D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, "Structural Defects in Amorphous Solids Statistical-Analysis of a Computer-Model," Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 44, 847-866, 1981.
[61] H. Rafii-Tabar, "Computational Modelling of Thermo-mechanical and Transport Properties of Carbon Nanotubes," Physics Reports-Review Section of Physics Letters, 394, 357-357, 2004.
[62] A. Gannepalli and S. K. Mallapragada, "Molecular Dynamics Studies of Plastic Deformation during Silicon Nanoindentation," Nanotechnology, 12, 250-257, 2001.
[63] A. J. Cao, Y. Q. Cheng, and E. Ma, "Structural Processes that Initiate Shear Localization in Metallic Glass," Acta Materialia, 57, 5146-5155, 2009.
[64] F. Shimizu, S. Ogata, and J. Li, "Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations," Materials Transactions, 48, 2923-2927, 2007.
[65] C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, "Size Dependence of Young's Modulus in ZnO Nanowires," Physical Review Letters, 96, 075505, 2006.
[66] D. Frenkel and J. P. Hansen, "Understanding Liquids: A Computer Game?," Physics World, 9, 35-40, 1996.
[67] M. P. Allen and D. J. Tildesley, Computer simulation of liquids: Oxford university press, 1989.
[68] D. C. Rapaport, The art of molecular dynamics simulation: Cambridge university press, 2004.
[69] J. M. Haile, Molecular dynamics simulation: elementary methods: John Wiley & Sons, Inc., 1992.
[70] Qing-Min Ma, Zun Xie, Jing Wang, Ying Liu, You-Cheng Li, "Structures, Binding Energies and Magnetic Moments of Small Iron Clusters:A Study Based on All-electron DFT," Solid State Communications, 142, 114-119, 2007.
[71] Nishith Kumar Das, Tetsuo Shoji," A Density Functional Study of Atomic Oxygen and Water Molecule Adsorption on Ni(111) and Chromium-substituted Ni(111) Surfaces," Applied Surface Science, 258, 442-447, 2011.
[72] Dianling Fu,Wenyue Guo,Yunjie Liu,Yuhua Chi, "Adsorption and Dissociation of H2S on Mo2C(001) Surface-A First-principle Study," Applied Surface Science, 351, 125-134, 2015.
[73] S.S.Yu , Q.B.Wen , W.T.Zheng, and Q.Jiang, "Effects of Doping Nitrogen Atoms on the Structure and Electronic Properties of Zigzag Single-walled Carbon Nanotubes through First-principles Calculations," Nanotechnology, 18, 165702, 2007.
[74] V. Yu. Kazimirov, "First-principles Simulation of the Elastic Properties of Multicomponent Amorphous Steels," Physical Review B, 80, 214117, 2009.
[75] J. P. Perdew and Y. Wang, "Accurate and Simple Analytic Representation of the Electron-gas Correlation-energy," Physical Review B, 45, 13244-13249, 1992.
[76] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Physical Review Letters, 77, 3865-3868, 1996.
[77] C. Kittel and P. McEuen, Introduction to solid state physics vol. 7: Wiley New York, 1996.
[78] X.D Dai,Y Kong, J.H Li and B.X Liu, "Extended Finnis–Sinclair Potential for bcc and fcc Metals and Alloys," J. Phys.: Condens. Matter, 18, 4527-4542, 2006.
[79] Byeong-Joo Lee, Jin-Wook Lee,"A Modified Embedded-Atom Method Interatomic Potential for Carbon," Computer Coupling of Phase Diagrams and Thermochemistry, 29, 7-16, 2005.
[80] R. Gao, Y.F. Zhao, X.J. Liu, Z.K. Liu, X. Hui,"A Ab Initio Molecular Dynamics Simulation of the Liquid and Amorphous Structure of Mg65Cu25Gd10 Alloy," Physica B, 426, 65-70, 2013.
[81] C.C. Wang, C.H. Wong," Structural Properties of ZrxCu90−xAl10 Metallic Glasses Investigated by Molecular Dynamics Simulations," Journal of Alloys and Compounds, 510 , 107-113, 2012.
[82] D. J. Evans and B. L. Holian,"The Nose–Hoover Thermostat," J. Chem. Phys. , 83, 4069, 1985.
[83] William C. Swope, Hans C. Andersen, Peter H. Berens and Kent R. Wilson," A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters," J. Chem. Phys., 76, 637, 1982.
[84] D. S¸opu, Y. Ritter, H. Gleiter,and K. Albe,"Deformation Behavior of Bulk and Nanostructured Metallic Glasses Studied via Molecular Dynamics Simulations," Physical Review B, 83, 100202, 2011.
[85] X.J. Gu and S. Joseph Poon,"Mechanical Properties of Iron-based Bulk Metallic Glasses," J. Mater. Res., 22, 344-351, 2007.
[86] J. J. Lewandowski, X. J. Gu, A. Shamimi Nouri, S. J. Poon, and G. J. Shiflet ,"Tough Fe-based Bulk Metallic Glasses," Applied Physics Letters, 92, 091918 2008.
[87] S.F. Guo,L. Liu,N. Li and Y. Li,"Fe-based Bulk Metallic Glass Matrix Composite with Large Plasticity," Scripta Materialia, 62, 329–332, 2010.
[88] S. F. Guo,J. L. Qiu,P. Yu,S. H. Xie,and W. Chen," Fe-based Bulk Metallic Glasses: Brittle or Ductile?," Applied Physics Letters , 105, 161901 , 2014.
[89] Z. F. Zhang, G. He, J. Eckert, and L. Schultz," Fracture Mechanisms in Bulk Metallic Glassy Materials," Physical Review Letters , 91, 045505 , 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code