Responsive image
博碩士論文 etd-0719115-152642 詳細資訊
Title page for etd-0719115-152642
論文名稱
Title
以開徑式傅立葉轉換紅外光譜儀(OP-FTIR)鑑定石化工業區揮發性有機物來源及逸散排放量推估
Source Identification and Fugitive Emission Quantification of VOCs in Petrochemical Complexes by Using Open-Path Fourier Transform Infrared Spectrometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
213
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-05-23
繳交日期
Date of Submission
2015-08-21
關鍵字
Keywords
開徑式傅立葉轉換紅外光、污染源鑑定、擴散模式、逸散排放、揮發性有機污染物
Fugitive emissions, OPFTIR, ISCST3, VOCs, Source identification
統計
Statistics
本論文已被瀏覽 5667 次,被下載 127
The thesis/dissertation has been browsed 5667 times, has been downloaded 127 times.
中文摘要
在石化工業區由於各工廠製程不盡相同,各項揮發性有機污染物可能非為單一污染源,常包含數個逸散貢獻源,因此固定點位之OP-FTIR(開徑式傅立葉轉換紅外光, Open-Path Fourier Transform Inftared),雖能掌握工業區對於周界環境之揮發性有機物貢獻方向,但難以明確定義出污染物主要貢獻來源,故本研究進一步利用2組移動式OP-FTIR分區監測,以達到污染源確認之目的。高雄市某石化工業區經固定式OP-FTIR長期監測後發現其主要超標污染物以N,N-二甲基甲醯胺(DMF)為主,本研究乃應用固定式及移動式OP-FTIR,針對工業區內可能貢獻DMF之工廠,執行上、下風同步監測作業,藉由污染玫瑰圖推判出工業區主要DMF貢獻來源為B廠,後續並於B廠區內執行移動式OP-FTIR分區監測,確認B廠各製程DMF排放特性,分析該廠各分區揮發性有機物排放相關性後,除掌握DMF貢獻來源外,並發現該廠乾式PU製程亦排放乙酸乙酯、2-丁酮及異丙醇等污染物。此外,本研究之污染源追蹤及相關性分析,不僅可應用於石化工業區之污染源釐清,亦可投入其他大範圍之空氣污染源追蹤。

此外,本研究於另一石化工業區固定站追蹤得1,3-丁二烯可疑排放來源後,進一步至該可疑來源工廠M1製程下風處架設一移動式OP-FTIR測線,藉由移動式OP-FTIR實測大氣VOCs濃度及ISCST擴散模式模擬值之比對,並利用試誤法在考量風向及風速等影響因子後,獲取與FTIR實測值相關性最高之模擬數據及相關方程式,藉以推估得VOCs實際逸散排放量,本研究在排除低風速及其他額外污染貢獻影響情況下,推估得M1製程之1,3-丁二烯排放量相關方程式,其相關方程式的斜率非常接近1,顯示整合OP-FTIR監測方法及ISCST3模式模擬,是為推估污染源逸散排放量的可行方法之一。
Abstract
The petrochemical complex examined in this work includes a great variety of facilities and factories that emit various odorants. Fugitive emissions are one of the largest sources of volatile organic compounds (VOCs) from petrochemical and chemical plants. However, how to identiufy and quantify the total fugitive VOC emissions from numerous and mostly inaccessible sources is a time consuming and costly task. A stationary open-path Fourier transform infrared (OPFTIR) system can be used for routine VOC and odor monitoring. However, when odor episodes occur, only multiple mobile OPFTIR systems are able to identify the odorant sources effectively and efficiently. In this study, N,N-dimethyl formamide (DMF) was found to be the most commonly detected odorant emitted from the investigated petrochemical complex by routine monitoring of a stationary OPFTIR system. Then the sequential deployments of a pair of mobile OPFTIR systems were carried out both upwind and downwind of the different sections of the focal area. The pollution rose plots derived from the data obtained by the pair of mobile OPFTIR systems identified the DMF sources. By conducting correlation analyses on the data obtained from the mobile OPFTIR situated at the downwind location of the DMF emission sources, we found that besides DMF, the dry PU synthetic leather process of plant B was also the major odorant source of 2-butanone, ethyl acetate and isopropanol. The source identification measure developed in this study can be used to clarify possible odorant sources not only for petrochemical industrial complexes but also for other areas associated with various emission sources.

This study also presents a feasible approach to quantify the fugitive VOC emissions by integrating OPFTIR measurements and the well-developed Industrial Source Complex Short Term Model (ISCST3). A mobile OPFTIR system was set up for 190 hours in the downwind location of a 1,3-butadiene manufacturing process, which has unidentified fugitive sources and should be responsible for the elevated atmospheric 1,3-butadiene concentrations. Wind speeds and directions were found to be the most important factors in the dispersion of the emissions. Therefore, when using trial and error to predict the fugitive 1,3-butadiene emission rates, we divided the field measurement data based on the wind directions and excluded that obtained during lower wind speeds. Then the correlation coefficients between the field data (from the mobile OPFTIR system) and the modeling data (from the ISCST3) were found to be up to 0.529, and the slope of the correlation equation was close to unity. Therefore, integrating the OPFTIR measurement and ISCST3 is a feasible approach to predict the amount of fugitive VOC emissions.
目次 Table of Contents
謝誌..........................................................................................................i
中文摘要...................................................................................................ii
英文摘要...................................................................................................iii
目錄..........................................................................................................v
表目錄.......................................................................................................viii
圖目錄.......................................................................................................xiii
第一章 前言................................................................................................1
1.1 研究緣起. ..........................................................................................1
1.2 研究目的............................................................................................2
1.3 研究範疇及架構..................................................................................3
第二章 文獻回顧.........................................................................................5
2.1 揮發性有機物.....................................................................................5
2.1.1 揮發性機物(VOCs)之定義....................................................................5
2.1.2 人為活動之VOCs來源.........................................................................7
2.1.3 石化工業區VOCs排放種類..................................................................9
2.1.4 揮發性有機物對健康之負面影響..........................................................13
2.2 揮發性有機物之管制辦法....................................................................15
2.2.1 揮發性有機物空氣污染管制及排放標準................................................16
2.2.2 固定污染源空氣污染物排放標準..........................................................16
2.2.3 固定污染源設置與操作許可證管理辦法................................................17
2.2.4 固定污染源空氣污染物連續自動監測設施管理辦法................................17
2.3 污染源追蹤與環境法醫之相關性..........................................................17
2.4 開徑式光學遙測儀器對於空氣污染物之監測應用...................................18
2.4.1 開徑式光學遙測儀器應用範圍.............................................................19
2.4.2 開徑式光學遙測儀器之分類與比較......................................................20
2.4.3 開徑式傅立葉轉換紅外光譜儀(OP-FTIR)污染監測之應用........................24
第三章 研究方法 .......................................................................................30
3.1 OP-FTIR污染源鑑定技術....................................................................30
3.1.1 目標工業區.......................................................................................30
3.1.2 OP-FTIR系統污染追蹤策略.................................................................31
3.2 污染物逸散洩漏量評估.......................................................................32
3.2.1 目標石化工業製程.............................................................................32
3.2.2 空氣品質ISCST3擴散模式..................................................................33
3.3 OP-FTIR監測分析方法.......................................................................34
3.3.1 OP-FTIR監測系統.............................................................................34
3.3.2 監測結果分析...................................................................................41
3.3.3 OP-FTIR監測作業品保品管作業..........................................................55
第四章 結果與討論....................................................................................76
4.1 石化工業區空氣中VOCs來源鑑定.......................................................76
4.1.1 固定式OP-FTIR定期監測...................................................................76
4.1.2 移動式OP-FTIR污染追蹤...................................................................89
4.1.3 DMF污染源分區鑑別.......................................................................102
4.1.4 二甲基甲醯胺與其他污染物之相關性.................................................131
4.2 石化工業製程之VOCs逸散洩漏量推估...............................................145
4.2.1 固定式OP-FTIR測站監測分析............................................................145
4.2.2 移動式OP-FTIR測線監測分析............................................................155
4.2.3 結合ISCST3擴散模式評估丁二烯逸散量.............................................160
4.2.4 推估丁二烯與M1製程逸散排放量比對...............................................164
第五章 結論與建議..................................................................................169
5.1 結論...............................................................................................169
5.2 建議...............................................................................................170
參考文獻.................................................................................................171
附錄A ISCST3模擬模式參數.....................................................................A-1

表 目 錄
表2.1.1-1 我國建議優先調查管制之30種有害空氣污染物及其相關資料............6
表2.1.3-1 石化/石油煉製業污染源排放特性.................................................10
表2.1.3-2 美國環保署公告之毒性空氣污染物排放清單..................................11
表2.1.4-1 VOCs對人體健康之影響.............................................................14
表2.3.2-1 開徑式光學遙測系統之分類與比較...............................................24
表2.4.3-1 在不同大氣環境下FTIR之監測方法應用........................................27
表3.3.1-1 OP-FTIR儀器之規格...................................................................36
表3.3.2-1 紅外光光譜分類.........................................................................42
表3.3.2-2 定量程式(script)撰寫範例...........................................................48
表3.3.2-3 定量程式(script)驗證範例...........................................................50
表3.3.2-4 氣象資料紀錄表格範例..............................................................52
表3.3.2-5 OP-FTIR可能誤差來源...............................................................54
表3.3.3-1 主要儀器設備平時保養注意事項.................................................57
表3.3.3-2 均方根雜訊值計算結果..............................................................63
表3.3.3-3 周界常見化學品之偵測極限........................................................66
表3.3.3-4 標準氣體之偵測極限..................................................................70
表3.3.3-5 精密度測試結果.........................................................................72
表3.3.3-6 準確度測試結果.........................................................................74
表3.3.3-7 混合氣體測試結果(開放光徑式)...................................................75
表3.3.3-8 混合氣體測試結果(抽氣式)..........................................................75
表4.1.1-1 固定站OP-FTIR監測結果統計表(101年1月)...................................77
表4.1.1-2 固定站OP-FTIR測站101年1月份氣象統計資料..............................78
表4.1.1-3 固定站OP-FTIR監測結果統計表(101年2月)...................................79
表4.1.1-4 固定站OP-FTIR測站101年2月份氣象統計資料..............................80
表4.1.1-5 固定站OP-FTIR監測結果統計表(101年3月)...................................81
表4.1.1-6 固定站OP-FTIR測站101年3月份氣象統計資料..............................82
表4.1.1-7 固定站OP-FTIR監測結果統計表(101年4月)..................................83
表4.1.1-8 固定站OP-FTIR測站101年4月份氣象統計資料..............................84
表4.1.1-9 固定站OP-FTIR監測結果統計表(101年5月)...................................85
表4.1.1-10 固定站OP-FTIR測站101年5月份氣象統計資料..............................86
表4.1.1-11 固定站OP-FTIR監測結果統計表(101年6月)...................................87
表4.1.1-12 固定站OP-FTIR測站101年6月份氣象統計資料..............................88
表4.1.1-13 固定站OP-FTIR測站於2012年之東-南風頻率變化情形....................89
表4.1.2-1 A廠OP-FTIR監測結果統計表.......................................................91
表4.1.2-2 A廠監測期間氣象資料統計表......................................................93
表4.1.2-3 B廠OP-FTIR監測結果統計表.......................................................94
表4.1.2-4 B廠監測期間氣象資料統計表......................................................95
表4.1.2-5 C廠OP-FTIR監測結果統計表.......................................................96
表4.1.2-6 C廠監測期間氣象資料統計表......................................................97
表4.1.2-7 D廠OP-FTIR監測結果統計表.......................................................99
表4.1.2-8 D廠監測期間氣象資料統計表....................................................100
表4.1.3-1 B廠第一監測分區各測線監測結果統計表....................................104
表4.1.3-2 第一監測分區監測期間氣象資料統計表......................................105
表4.1.3-3 B廠第二監測分區各測線監測結果統計表....................................107
表4.1.3-4 第二監測分區監測期間氣象資料統計表......................................109
表4.1.3-5 B廠第三監測分區各測線監測結果統計表....................................111
表4.1.3-6 第三監測分區監測期間氣象資料統計表......................................112
表4.1.3-7 B廠第一監測分區不同測線東南-西北風向期間分析結果彚整表......127
表4.1.3-8 B廠第二監測分區不同測線東南-西北風向期間分析結果彚整表......128
表4.1.3-9 B廠第三監測分區不同測線東南-西北風向期間析結果彚整表.........129
表4.1.4-1 B廠第一監測分區第一測線各監測污染物相關性分析....................133
表4.1.4-2 B廠第一監測分區第二測線各監測污染物相關性分析....................134
表4.1.4-3 B廠第二監測分區第二測線各監測污染物相關性分析....................135
表4.1.4-4 B廠第二監測分區第三測線各監測污染物相關性分析....................136
表4.1.4-5 B廠第三監測分區第二線各監測污染物相關性分析.......................137
表4.1.4-6 B廠第三監測分區第四測線各監測污染物相關性分析....................138
表4.1.4-7 B廠第一監測分區第一測線吹西北風期間可能排放化合物之相關性 ................139
表4.1.4-8 B廠第一監測分區第二測線吹西北風期間可能排放化合物之相關性 ................139
表4.1.4-9 B廠第一監測分區第一測線吹東南風期間可能排放化合物之相關性 ................140
表4.1.4-10 B廠第二監測分區第二測線吹東南風期間可能排放化合物之相關性 ................140
表4.1.4-11 B廠第二監測分區第二測線吹西北風期間可能排放化合物之相關性 ................141
表4.1.4-12 B廠第二監測分區第三測線吹西北風期間可能排放化合物之相關性 ................141
表4.1.4-13 B廠第二監測分區第二測線吹東南風期間可能排放化合物之相關性 ................142
表4.1.4-14 B廠第二監測分區第三測線吹東南風期間可能排放化合物之相關性 ................142
表4.1.4-15 B廠第三監測分區第二測線吹西北風期間可能排放化合物之相關性 ................143
表4.1.4-16 B廠第三監測分區第四測線吹西北風期間可能排放化合物之相關性 ................143
表4.1.4-17 B廠第三區監測分區第二測線吹東南風期間可能排放化合物之相關性 ................144
表4.1.4-18 B廠第三監測分區第四測線吹東南風期間可能排放化合物之相關性 ................144
表4.1.4-19 DMF與其他揮發性有機污染物之Spearman相關性分析.................145
表4.2.1-1 目標石化工業區101年3月份OP-FTIR固定站監測結果...................147
表4.2.1-2 目標石化工業區101年4月份OP-FTIR固定站監測結果...................148
表4.2.1-3 目標石化工業區101年5月份OP-FTIR固定站監測結果...................150
表4.2.1-4 目標石化工業區101年6月份OP-FTIR固定站監測結果...................151
表4.2.1-5 目標石化工業區101年7月份OP-FTIR固定站監測結果...................153
表4.2.1-6 目標石化工業區101年8月份OP-FTIR固定站監測結果...................154
表4.2.2-1 目標石化工廠M1製程下風處OP-FTIR測線監測結果.....................157
表4.2.2-2 M1製程監測期間氣象資料統計表...............................................158
表4.2.4-1 M1製程設備元件檢測申報資料..................................................164
表4.2.4-2 石化工廠設備元件排放係數彙整表.............................................165
表4.2.4-3 M1製程設備元件以平均因子法計算排放量結果...........................165
表4.2.4-4 M1製程設備元件以漏與不漏法計算排放量結果...........................166
表4.2.4-5 M1製程設備元件以層次因子法計算排放量結果...........................167
表4.2.4-6 M1製程設備元件不同推估方式之排放量比對...............................168

圖 目 錄
圖1.3-1 研究架構流程圖..........................................................................4
圖2.3.3-1 高科技工業園區OP-FTIR測線所測得之異味污染來源分佈方向........26
圖3.1.1-1 目標工業區與固定式OP-FTIR相對位置圖,A、B、C三廠為使用DMF之工廠......30
圖3.2.1-1 目標石化工業區及其鄰近OP-FTIR測站相對位置圖........................32
圖3.2.1-2 目標石化工業區鄰近OP-FTIR測站測得之丁二烯污染方向圖...........33
圖3.3.1-1 OP-FTIR監測系統訊號連線架構圖...............................................35
圖3.3.1-2 OP-FTIR系統單元配置圖............................................................35
圖3.3.1-3 液態氮自動填充系統..................................................................37
圖3.3.1-4 OP-FTIR量測示意圖..................................................................38
圖3.3.1-5 光譜轉換示意圖........................................................................38
圖3.3.1-6 OP-FTIR對焦畫面.....................................................................40
圖3.3.1-7 OP-FTIR連續監測畫面...............................................................40
圖3.3.1-8 圖譜搜索畫面............................................................................40
圖3.3.1-9 數據處理畫面............................................................................41
圖3.3.2-1 碳氫鍵特性吸收峰.....................................................................41
圖3.3.2-2 FTIR圖譜可視區間.....................................................................43
圖3.3.2-3 圈選波峰與光譜資料庫比對........................................................43
圖3.3.2-4 圖譜之全圖比對........................................................................44
圖3.3.2-5 圖譜扣除圖例...........................................................................44
圖3.3.2-6 圖譜轉換圖例...........................................................................45
圖3.3.2-7 合成標準圖譜範例....................................................................49
圖3.3.2-8 光徑積分濃度...........................................................................51
圖3.3.2-9 風向風速整合之風花圖..............................................................51
圖3.3.2-9 時間與濃度關係圖(範例).......................................................53
圖3.3.2-10 污染與風向、風速的關係圖(範例)..........................................53
圖3.3.3-1 散射光譜圖..............................................................................59
圖3.3.3-2 散射光譜與樣品光譜比對圖.......................................................60
圖3.3.3-3 解析度計算結果.......................................................................61
圖3.3.3-4 968cm-1~1008cm-1之均方根雜訊變化.......................................64
圖3.3.3-5 2480cm-1~2520cm-1之均方根雜訊變化.....................................64
圖3.3.3-6 4380cm-1~4420cm-1之均方根雜訊變化.....................................64
圖4.1.1-1 固定站OP-FTIR測站101年1月份風玫瑰圖...................................78
圖4.1.1-2 固定站OP-FTIR測站101年2月份風玫瑰圖...................................80
圖4.1.1-3 固定站OP-FTIR測站101年3月份風玫瑰圖...................................82
圖4.1.1-4 固定站OP-FTIR測站101年4月份風玫瑰圖...................................84
圖4.1.1-5 固定站OP-FTIR測站101年5月份風玫瑰圖...................................87
圖4.1.1-6 固定站OP-FTIR測站101年6月份風玫瑰圖...................................88
圖4.1.1-7 目標工業區固定式OP-FTIR之DMF變化趨勢................................89
圖4.1.2-1 A廠監測期間風玫瑰圖..............................................................93
圖4.1.2-2 B廠監測期間風玫瑰圖..............................................................95
圖4.1.2-3 C廠監測期間風玫瑰圖..............................................................98
圖4.1.2-4 D廠監測期間風玫瑰圖..............................................................101
圖4.1.2-5 目標工業區內四廠逐步監測二甲基甲醯胺之污染分布圖................101
圖4.1.3-1 B廠內各分區移動式OP-FTIR監測測線分布情形...........................103
圖4.1.3-2 第一監測分區監測期間風玫瑰圖................................................106
圖4.1.3-3 第二監測分區監測期間風玫瑰圖................................................109
圖4.1.3-4 第三監測分區監測期間風玫瑰圖................................................113
圖4.1.3-5 B廠第一監測分區主要監測污染物分布圖....................................114
圖4.1.3-6 B廠第一、二測線二甲基甲醯胺與風向、風速比較圖....................116
圖4.1.3-7 B廠第二監測分區主要監測污染物分布圖....................................118
圖4.1.3-8 B廠第二、三測線二甲基甲醯胺與風向、風速比較圖....................120
圖4.1.3-9 B廠第三監測分區主要監測污染物分布圖....................................122
圖4.1.3-10 B廠第二、四測線二甲基甲醯胺與風向、風速比較圖....................124
圖4.1.3-11 B廠不同分區二甲基甲醯胺污染貢獻分布情形..............................130
圖4.2.2-1 移動式OP-FTIR測線與石化廠M1製程相對位置圖.........................155
圖4.2.2-2 移動式OP-FTIR測線與石化廠M1製程相對位置圖.........................156
圖4.2.2-3 M1製程監測期間風玫瑰圖.........................................................159
圖4.2.2-4 M1製程監測期間丁二烯污染玫瑰圖............................................159
圖4.2.3-1 ISCST3M1製程體源排放模擬模式..............................................161
圖4.2.3-2 FTIR實測值與ISCST3模擬值之相關係數及丁二烯逸散量..............162
圖4.2.3-2 實測值與模擬值於風速>2 m/s之相關係數及丁二烯逸散量............163
參考文獻 References
Aneja, V.P., Arya, S.P., Rumsey, I.C., Kim, D.-S., Arkinson, H., Semunegus, H., Bajwa, K., Dickey, D., Stefanski, L., and Todd, L. (2008). Characterizing ammonia emissions from swine farms in eastern north Carolina: Part 2 - Potential environmentally superior technologies for waste treatment. J. Air Waste Manage. Assoc. 58: 1145-1157.
Atkinson, R. (1990), Gas-phase tropospheric chemistry of organic compounds: a review, Atmos. Environ., 24A, 1-41.
Bello, C. and Siegell, J. (1997). Why valves leak: A search for the cause of fugitive emissions. Environ. Prog. 16: 13-15.
Cetin, E., Odabasi, M., and Seyfioglu, R. (2003). Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Sci. Total Environ. 312: 103-112.
Chambers, A.K., Strosher, M., Wootton, T., Moncrieff, J., and McCready, P. (2008). Direct measurement of fugitive emissions of hydrocarbons from a refinery. J. Air Waste Manage. Assoc. 58: 1047-1056.
Chang, C.-J., Yang, H.-H., Chang, C.-A., and Tsai, H.-Y. (2013). Volatile organic compounds and nonspecific conjunctivitis: a population-based study. Aerosol Air Qual. Res. 13: 237-242.
Chen, L.-Y., Jeng, F.-T., Chang, M.-W., and Yen, S.-H. (2000). Rationalization of an odor monitoring system: A case study of Lin-Yuan Petrochemical Park. Environ. Sci. Technol. 34: 1166-1173.
Chen, W.-H., Yang, W.-B., Yuan, C.-S., Yang, J.-C., and Zhao, Q.-L. (2013). Influences of aeration and biological treatment on the fates of aromatic VOCs in wastewater treatment processes. Aerosol Air Qual. Res. 13: 225-236.
Chiang, H.L., Tsai, J.H., Chen, S.Y., Lin, K.H., and Ma, S.Y. (2007). VOC concentration profiles in an ozone non-attainment area: A case study in an urban and industrial complex metroplex in southern Taiwan, Atmos. Environ., 41(9): 1848-1860.
Childers, J., Thompson, E., Harris, D., Kirchgessner, D., Clayton, M., Natschke, D., and Phillips, W. (2001). Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry. Atmos. Environ. 35: 1923-1936.
Dincer, F. and Muezzinoglu, A. (2006). Chemical characterization of odors due to some industrial and urban facilities in Izmir, Turkey. Atmos. Environ. 40: 4210-4219.
Doskey, P.V., Fukui, Y., and Sultan, M., (1999). Source profile for nonmethane organic compounds in the atmosphere of Cairo, Journal Air & Waste Management Association, 49:814-822.
Edwards W. C.,(1991)VOC emissions from major organic chemical plants in Canada, 84th Annual. Meeting, Air & Waste Management Association, B.C, Columbia.
Ellis, H.M. and Lackaye, R. (1989). Estimating fugitive emissions of volatile compounds from equipment leaks. JAPCA. 39: 1619-1622.
Fang G.C., Wu Y.S., Lin S.M. and Lin C.H. (2013). Study of Ambient Air Particulates (Particulate Matter [PM]2.5, PM10, and Total Suspended Particulates [TSP]) Ionic Species Concentrations in Asian Countries During 1995–2009. Environmental Forensics, Volume 14, Issue 2: 121-132.
Fang G.C., Chiang H.C., Chen Y.C., Lin Y.H., Kuo Y.C. and Zhuang Y.J.(2015). Characteristic Study of Ambient Air Total Gaseous Mercury (TGM) Concentrations During Rainy and Non-Rainy Periods at a Traffic Site in Taiwan. Environmental Forensics, Volume 16, Issue 2: 117-124.
George, M.R. and Jeffery, W.C. (1996). FT-IR Open-Path Monitoring Guidance Document, United States Environmental Protection Agency.
Hassim, M.H., Pérez, A.L., and Hurme, M. (2010). Estimation of chemical concentration due to fugitive emissions during chemical process design. Safety and Environmental Protection. 88: 173-184
Hong, D.W., Heo, G.S., Han, J.S., and Cho, S.Y. (2004). Application of the open path FTIR with COL1SB to measurements of ozone and VOCs in the urban area. Atmos. Environ. 38: 5567-5576.
Huang, J., Chen X., Liu C.K., Huang C.S. and Fang G.C. (2013). Ambient Trace Metals Sources in Taichung, Taiwan: Principal Component Analysis. Aerosol and Air Quality Research, 13: 672–679.
International Agency for Research of Cancer, (2011). IARC monographs on the evaluation of carcinogenic risks to humans, Agents classified by the IARC monographs, Vol.1-100.
Kalabokas, P., Hatzianestis, J., Bartzis, J., and Papagiannakopoulos, P. (2001). Atmospheric concentrations of saturated and aromatic hydrocarbons around a Greek oil refinery. Atmos. Environ. 35: 2545-2555.
Kelly, T.J., (1992). Air pollutant monitoring and health risk assessment in Allen Country-Lima, 85th Annual Meeting and Exhibition of Air & Waste management Association, Kansas City, Missouri. USA.
Kotesva, K and T. Popov, (1998). Study of the cardiovascular effects of occupational exposure to organic solvents. Int. Arch. Occup. Environ. Health., 71: 87-91.
Lai, C.H., Chen, K.S., Ho, Y.T., Chou, M.S. (2004) Characteristics of C2-C5 hydrocarbons in the air of urban Kaohsiung, Taiwan, Atmos. Environ., 38:1997-2011.
Levaggi D. A. and Sia W., (1991) Gaseous toxics monitoring in the San Francisco Bay Area: A review and assessment of four years of data, 84th Annual Meeting of Air & Waste Management Association, Vancouver, B.C., Columbia., Canada.
Lin, C., Liou, N., Chang, P.-E., Yang, J.-C., and Sun, E. (2007). Fugitive coke oven gas emission profile by continuous line averaged open-path Fourier transform infrared monitoring. J. Air Waste Manage. Assoc. 57: 472-479.
Lin, C., Liou, N., and Sun, E.(2008). Applications of open-path fourier transform infrared for identification of volatile organic compound pollution sources and characterization of source emission behaviors. J. Air Waste Manage. Assoc. 58:6, 821-828.
Lin, T.Y., Sree, U., Tseng, S.H., Chiu, K.H., Wu, C.H., and Lo, J.G. (2004).Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan, Atmos. Environ., 38(25):4111-4122.
Liu C.C., Chen W.H., Yuan C.S. and Lin C.(2014). Multivariate analysis of effects of diurnal temperature and seasonal humidity variations by tropical savanna climate on the emissions of anthropogenic volatile organic compounds. Science of The Total Environment. Volumes 470–471: 311–323.
Molhave, L., (1992)Volatle organic compounds, indoor air quality and health,” Indoor Air, 1: 357-376.
Onat, A. (2008). The effects of sealing materials on elimination of fugitive emissions. Mater. Des. 29: 533-538.
Perry, S.G., Cimorelli, A.J., Paine, R.J., Brode, R.W., Weil, J.C., Venkatram, A., Wilson, R.B., Lee, R.F., and Peters, W.D. (2005). AERMOD: A dispersion model for industrial source applications. Part II: Model performance against 17 field study databases. J. Appl. Meteorol. 44: 694-708.
Rahill A.A., Weiss, B., Morrow, P.E., Frampton, M.W., Cox, C.,Gibb, R., Gelein, R., Speers, D., and Utell, M.J. (1996). Human performance during exposure to toluene, Aviation Space and Environ. Medicine, 67:640-647.
Ryerson, T., Trainer, M., Angevine, W., Brock, C., Dissly, R., Fehsenfeld, F., Frost, G., Goldan, P., Holloway, J., and Hübler, G. (2003). Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas. J. Geophys. Res. 108: 4249.
Safitri, A., Gao, X., and Mannan, M.S. (2011). Dispersion modeling approach for quantification of methane emission rates from natural gas fugitive leaks detected by infrared imaging technique. J. Loss Prev. Process Ind. 24: 138-145.
Scheff P.A. and Porter J.A., (1991) Improvement of VOC source fingerprints for vehicles and refineries, 84th Annual Meeting of Air & Waste Management Association, 16-21, B.C.Coliumbia,Canada.
Tsao, Y.-C., Wu, C.-F., Chang, P.-E., Chen, S.-Y., and Hwang, Y.-H. (2011). Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant. Sci. of Total Environ. 409: 3158-3165.
Wang, L.-C., Lee, W.-J., Tsai, P.-J., and Chen, S.-J. (2002). Potential method for reducing emissions of polycyclic aromatic hydrocarbons from the incineration of biological sludge for the terephthalic acid manufacturing industry. Environ. Sci. Technol. 36: 3420-3425.
Wang, L.-C., Lin, L.-F., and Lai, S.-O. (2009). Emissions of polycyclic aromatic hydrocarbons from fluidized and fixed bed incinerators disposing petrochemical industrial biological sludge. J. Hazard. Mater. 168: 438-444.
Wang, L.-C., Wang, I., Chang, J.-E., Lai, S.-O., and Chang-Chien, G.-P. (2007). Emission of polycyclic aromatic hydrocarbons (PAHs) from the liquid injection incineration of petrochemical industrial wastewater. J. Hazard. Matter. 148: 296-302.
Wu, C.F., Michael, G.Y., Ram, A.H., and Doo, Y.P., (1999). Experimental evaluation of a radial beam geometry for mapping air pollutants using optical remote sensing and computed tomography, Atmos. Environ., 33:4709-4716.
Wu, C.F., Michael, G.Y., Ram, A.H., and Tsai, M.Y., (2003). Path concentration profile reconstruction of optical remote sensing measurements using polynomial curve fitting procedures, Atmos. Environ., 37:1879-1888.
Yang J.J., Liu C.C., Chen W.H., Yuan C.S. and Lin C.(2013). Assessing the altitude effect on distributions of volatile organic compounds from different sources by principal component analysis. Environ. Sci.: Processes Impacts: 972-985.
Yost, M.G. and Hashmonay, R.A., (2003) Mapping air contaminants using path-integrated optical remote sensing with a non-overlapping variable path length beam geometry, US Patent 6, 2003.
Zoltán Bacsik , János Mink and Gábor Keresztury (2005). FTIR Spectroscopy of the Atmosphere Part 2. Applications, Applied Spectroscopy Reviews,40:4, 327-390
交通部統計處,『中華民國交通統計月報』,2014。
江森雄,『石化工業區揮發性有機氣體改善管理之研究-以頭份工業區為例』,中華大學工業工程與管理研究所碩士論文,2000。
行政院環保署,『有害空氣污染物管制規範及排放標準研定計畫』,行政院環保署研究計畫,1995。
行政院環保署,『固定污染源空氣污染物排放標準』,空氣污染防制0070號法規,2013。
行政院環保署,『固定污染源空氣污染物連續自動監測設施管理辦法』,空氣污染防制0570號法規,2003。
行政院環保署,『固定污染源設置與操作許可證管理辦法』,空氣污染防制0040號法規,2007。
行政院環保署,『揮發性有機物空氣污染管制及排放標準』,空氣污染防制0162號法規,2013。
何俊杰,『石化工業區揮發性有機物總量管制』,工業污染防制第71期,1999。
吳立言,『高雄地區固定污染源揮發性有機物指紋及光化反應潛勢之研究』,國立中山大學環境工程研究所碩士論文,2002。
吳義林,林清河,『廢氣燃燒塔與鍋爐之揮發性有機物排放係數建置』,行政院國科會專題研究計畫,2007。
李國璋,『應用開徑式UV-DOAS 量測高雄國際機場航道下環境空氣品質之研究』,國立中山大學環境工程研究所碩士論文,2009。
徐偉城,LIDAR 與環境調查/監測/災害防救應用,工業技術研究院,國土資訊系統通訊季刊第61期,69-79頁,2007/03。
袁中新,『高污染空品區有害空氣污染物本土暴露特性分析與資料庫建置:高污染空品區室外空氣污染熱區解析與暴露特性分析』,行政院國科會專題研究計畫,2006。
袁中新、羅卓卿、黃明和,『油品儲運站鄰近空氣中揮發性有機污染物分佈特性研究』,第十八屆空氣污染控制技術研討會,2001。
曹培熙、施明昌、黃智裕、洪榮木,光電科技在民生與環保產業之應用,科學發展月刊,第29卷第10期,695-701頁,2001年7月。
許逸群,『中部雲嘉南空品區臭氧污染成因調查研究分析:固定源及面源VOC排放推估及光化潛勢研究』,行政院國科會專題研究計畫(子計畫三),2007。
許逸群,『臭氧高濃度區揮發性有機物特徵與排放源關聯性研究』,國立成功大學環境工程研究所博士論文,2000。
陳佳伶,『石化工業區VOCs 物種及排放量推估』,輔英科技大學環境工程與科學系碩士論文,2007。
楊至哲,『石化工業區環境大氣中揮發性有機物垂直空間分布及季節變化趨勢分析』,中山大學環境工程研究所,2011。
廖琦峰,『工業區有害空氣污染物排放與影響評估方法之研究』,國立成功大學環境工程研究所碩士論文,2005。
劉乃維,『開徑式傅立葉轉換紅外光譜儀做為揮發性有機物量測之應用』,國立高雄海洋科技大學海洋環境工程所碩士論文,2006。
蔡俊鴻,『光化學二次污染現象與機制: 固定源排放揮發性有機物光化反應潛勢指標研究』,行政院國科會專題研究計畫(子計畫一),1998。
賴嘉祥,『高雄市大氣中C2-C15 揮發性有機物特徵之時空分佈及其受體模式之分析』,國立中山大學環境工程研究所碩士論文,2004。
羅卓卿,『油品儲運站鄰近空氣中揮發性有機污染物之特性研究』,國立中山大學環境工程研究所碩士論文,2001。
黃富昌、陳慶和、邱英嘉、吳承恩、陳淳圓、林諒昭、賴允偉、蕭博瑞、劉彥君,評析環境法醫技術在環境工程上之應用,2005台灣環境資源永續發展研討會論文集,pp. B05-1。
陳佳玫、楊錫賢、鄭詩楷、張簡國平、張鎮南、方國權,以圖譜分析鑑定大氣環境中PAHs來源研究,空氣污染控制技術研討會,2002。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code