Responsive image
博碩士論文 etd-0719116-102327 詳細資訊
Title page for etd-0719116-102327
論文名稱
Title
SGLT-2抑制劑對近端腎小管細胞粒線體的影響
Effects of SGLT-2 inhibitor on mitochondrial function in renal proximal tubular cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-08-19
關鍵字
Keywords
粒線體、腎臟、第二型鈉-葡萄糖共同轉運通道抑制劑、第二型糖尿病、近端腎小管細胞
Sodium-glucose cotransporter-2, Type 2 diabetes, Kidney, Proximal tubular cell, Mitochondria
統計
Statistics
本論文已被瀏覽 5695 次,被下載 62
The thesis/dissertation has been browsed 5695 times, has been downloaded 62 times.
中文摘要
近期上市的治療第二型糖尿病的新藥當中,第二型鈉-葡萄糖共同轉運通道(Sodium-glucose cotransporter-2, SGLT2)抑制劑,主要透過抑制近端腎小管細胞此一轉運通道對葡萄糖的再吸收,讓過多的葡萄糖由尿液中排出體外,藉此降低血液中葡萄糖的濃度。然而最新的研究顯示SGLT-2抑制劑除了降低血糖之外,更具有保護腎臟的作用,其中的機轉仍有待釐清。目前已有充分的研究證據指出,糖尿病會誘發腎小管細胞粒線體氧化壓力增加,造成其粒線體功能的損害;SGLT-2抑制劑會調控腸道細胞內ROS的製造,來減緩細胞發炎與死亡。因此我們假設SGLT-2抑制劑會透過粒線體對於近端腎小管細胞帶來正面的影響,從而達成其腎臟保護的作用。 本研究中,我們發現高糖高脂飲食誘發的糖尿病動物,其腎小管細胞粒線體融合蛋白減少,裂解蛋白增加。在電子顯微鏡觀察到葡萄糖會造成人類近端腎小管細胞 (HK2 cells) 粒線體呈現皺縮斷裂的型態。SGLT-2抑制劑empagliflozin能保護粒線體,減緩其走向皺縮斷裂。接著利用西方墨點分析粒線體動態平衡相關蛋白,發現empagliflozin使得受葡萄糖刺激之HK2細胞Mitofusion1 (MFN1)與Mitofusion2 (MFN2)增加,裂解蛋白Dynamin-related protein (DRP1)與Fission1 (FIS1)減少。在細胞凋亡的實驗發現葡萄糖造成TUNEL螢光表現增強,empagliflozin會減緩細胞凋亡;進一步測量細胞凋亡相關蛋白發現葡萄糖導致Bcl-2減少,Bid/t-bid,Bax, cytochrome C增加,並活化caspase-8, 9, 3的連鎖效應,而empagliflozin能降低這些相關蛋白表現。流式細胞儀的分析結果顯示empagliflozin可以讓細胞ROS及粒線體膜電位回復,呈現較正常的狀態。並且在高葡萄糖狀態下,empagliflozin可促使HK2細胞粒線體DNA拷貝數(copy number)增加,顯示它加強粒線體的有氧代謝,促進氧化磷酸化作用使得ATP產量增加。根據以上結果,我們認為empagliflozin藉由強化HK2細胞粒線體功能,減少粒線體斷裂來減緩高葡萄糖對HK-2細胞造成的傷害。
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are newly marketed oral hypoglycemic agents used to treat diabetic patients. They block reabsorption of filtered glucose by inhibiting the primary glucose transporter in the proximal tubular cells (PTC), leading to glycosuria and lowering of serum glucose. A growing body of evidence from diabetic animal studies shows that SGLT2 inhibitors offer kidney benefits in better function, less hyperfiltration, less albuminuria and ameliorating pathology. However, little is known about the underlying mechanisms of these phenomenon. Glucose is known to produce oxidative stress in glomerulus and renal tubules and eventually leads to its mitochondrial damage. SGLT2 inhibitors is reported to attenuated inflammation and reduce cellular apoptosis in the intestinal cells by regulating its reactive oxygen species (ROS) production. Therefore, we hypothesize that SGLT2 inhibitor offers renal protection via mitochondrial-dependent pathways. In the present study, it was found that mitochondrial fusion proteins were downregulated, whereas fission proteins were upregulated in renal proximal tubules of mice fed with high fat/high sucrose diet. By using transmission electron microscopy, it was shown that glucose induced a shrinkage appearance of mitochondria. Human proximal tubules HK2 cells were susceptible to glucose-induced mitochondria fragmentation, which was rescued by SGLT2 inhibitor empagliflozin. Western blots analysis showed that high glucose exposure reduced the expression of Mitofusion 1 (MFN1) and mitofusion 2 (MFN2), but increased the expression of Dynamin-related protein 1 in HK2 cells. In addition, empagliflozin application attenuated the glucose-induced apoptosis of HK2 cells Mechanistic study revealed that high glucose elicited down-regulation of Bcl-2 and up-regulation of t-Bid/Bid, Bax and cytochrome C in HK2 cells. Moreover, excessive glucose also triggered the activation of caspase-8, 9, 3. Application of empagliflozin rescued HK2 cells from apoptosis by down-regulating the above pro-apoptotic genes. Furthermore, empagliflozin supply protected the mitochondria from fragmentation by reducing ROS production and restoring mitochondrial membrane potential. Besides, empagliflozin improved the mitochondrial functions by increasing oxidative metabolism, ATP production, and mitochondrial DNA contents in high glucose treated HK2 cells. In conclusion, the present study suggested that SGLT2 inhibitor protected renal proximal tubules cells from glucose-mediated injuries through mitochondria-dependent mechanism.
目次 Table of Contents
中文摘要…………………………………………………………. i
英文摘要………………………………………..………………... ii
第 一 章 前言….……………………………………………… 1
第一節 糖尿病…………………………………………… 1
第二節 粒線體…………………………………………….. 3
第三節 第二型鈉葡萄糖轉運通道抑制劑- Empagliflozin. 5
第四節 Empagliflozin與粒線體…………………………… 7
第 二 章 材料與方法……………………………………………. 10
第 二 章 結果…………………………………………………... 18
第 三 章 討論…………………………………………………. 25
第 四 章 圖表…………………………………………………. 31
參考文獻…………………………… ……….…… …………….. 49
附錄………………………………………………………………. 52
參考文獻 References
Barnett, A. H., A. Mithal, et al. (2014). "Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial." Lancet Diabetes Endocrinol 2(5): 369-384.
Bleazard, W., J. M. McCaffery, et al. (1999). "The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast." Nat Cell Biol 1(5): 298-304.
Caramori, M. L., P. Fioretto, et al. (2000). "The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient?" Diabetes 49(9): 1399-1408.
Chan, C. B., D. De Leo, et al. (2001). "Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action." Diabetes 50(6): 1302-1310.
Chen, H., S. A. Detmer, et al. (2003). "Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development." J Cell Biol 160(2): 189-200.
Chen, H., M. Vermulst, et al. (2010). "Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations." Cell 141(2): 280-289.
Collins, A. J., R. N. Foley, et al. (2012). "'United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States." Am J Kidney Dis 59(1 Suppl 1): A7, e1-420.
Coughlan, M. T. and K. Sharma (2016). "Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease." Kidney Int.
Dugan, L. L., Y. H. You, et al. (2013). "AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function." J Clin Invest 123(11): 4888-4899.
Frank, S., B. Gaume, et al. (2001). "The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis." Dev Cell 1(4): 515-525.
Fujisawa, K., T. Nishikawa, et al. (2009). "TZDs reduce mitochondrial ROS production and enhance mitochondrial biogenesis." Biochem Biophys Res Commun 379(1): 43-48.
Guo, K., J. Lu, et al. (2015). "Protective role of PGC-1alpha in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling." PLoS One 10(4): e0125176.
Higgins, G. C. and M. T. Coughlan (2014). "Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy?" Br J Pharmacol 171(8): 1917-1942.
Lash, L. H. (2015). "Mitochondrial Glutathione in Diabetic Nephropathy." J Clin Med 4(7): 1428-1447.
Lee, Y. J. and H. J. Han (2007). "Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells." Kidney Int Suppl(106): S27-35.
Lee, Y. J., S. Y. Jeong, et al. (2004). "Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis." Mol Biol Cell 15(11): 5001-5011.
Lesnefsky, E. J., Q. Chen, et al. (2016). "Mitochondrial Metabolism in Aging Heart." Circ Res 118(10): 1593-1611.
Meeusen, S., R. DeVay, et al. (2006). "Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1." Cell 127(2): 383-395.
Nicholls, D. G. (2002). "Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease." Int J Biochem Cell Biol 34(11): 1372-1381.
Otera, H., C. Wang, et al. (2010). "Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells." J Cell Biol 191(6): 1141-1158.
Panchapakesan, U., K. Pegg, et al. (2013). "Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy?" PLoS One 8(2): e54442.
Rantanen, A. and N. G. Larsson (2000). "Regulation of mitochondrial DNA copy number during spermatogenesis." Hum Reprod 15 Suppl 2: 86-91.
Rasbach, K. A. and R. G. Schnellmann (2007). "Signaling of mitochondrial biogenesis following oxidant injury." J Biol Chem 282(4): 2355-2362.
Ritz, E., R. Nowack, et al. (1991). "Type II diabetes mellitus: is the renal risk adequately appreciated?" Nephrol Dial Transplant 6(10): 679-682.
Rosenstein, R. and A. Hough (2016). "Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes." N Engl J Med 374(11): 1093-1094.
Santel, A., S. Frank, et al. (2003). "Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells." J Cell Sci 116(Pt 13): 2763-2774.
Santel, A. and M. T. Fuller (2001). "Control of mitochondrial morphology by a human mitofusin." J Cell Sci 114(Pt 5): 867-874.
Sedor, J. R. (2006). "Frontiers in diabetic nephropathy: can we predict who will get sick?" J Am Soc Nephrol 17(2): 336-338.
Shi, Y. and F. B. Hu (2014). "The global implications of diabetes and cancer." Lancet 383(9933): 1947-1948.
Skrtic, M. and D. Z. Cherney (2015). "Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy." Curr Opin Nephrol Hypertens 24(1): 96-103.
Sun, L., P. Xie, et al. (2008). "Rap1b GTPase ameliorates glucose-induced mitochondrial dysfunction." J Am Soc Nephrol 19(12): 2293-2301.
Susztak, K. and E. P. Bottinger (2006). "Diabetic nephropathy: a frontier for personalized medicine." J Am Soc Nephrol 17(2): 361-367.
Tervaert, T. W., A. L. Mooyaart, et al. (2010). "Pathologic classification of diabetic nephropathy." J Am Soc Nephrol 21(4): 556-563.
Tin, A., M. E. Grams, et al. (2016). "Association between Mitochondrial DNA Copy Number in Peripheral Blood and Incident CKD in the Atherosclerosis Risk in Communities Study." J Am Soc Nephrol.
van der Bliek, A. M. (2009). "Fussy mitochondria fuse in response to stress." EMBO J 28(11): 1533-1534.
Vasilakou, D., T. Karagiannis, et al. (2013). "Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis." Ann Intern Med 159(4): 262-274.
Yamada, Y., H. Akita, et al. (2007). "Mitochondrial drug delivery and mitochondrial disease therapy--an approach to liposome-based delivery targeted to mitochondria." Mitochondrion 7(1-2): 63-71.
Yoon, Y., E. W. Krueger, et al. (2003). "The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1." Mol Cell Biol 23(15): 5409-5420.
Yoon, Y. S., D. S. Yoon, et al. (2006). "Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1." J Cell Physiol 209(2): 468-480.
Yu, T., J. L. Robotham, et al. (2006). "Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology." Proc Natl Acad Sci U S A 103(8): 2653-2658.
Zhang, C. Y., G. Baffy, et al. (2001). "Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes." Cell 105(6): 745-755.
Zorzano, A., M. Liesa, et al. (2009). "Mitochondrial dynamics as a bridge between mitochondrial dysfunction and insulin resistance." Arch Physiol Biochem 115(1): 1-12.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code