Responsive image
博碩士論文 etd-0719116-140125 詳細資訊
Title page for etd-0719116-140125
論文名稱
Title
臺灣南部養殖池之甲烷通量
Fluxes of methane in aquaculture ponds in southern Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-08
繳交日期
Date of Submission
2016-08-31
關鍵字
Keywords
通量、逸散量、甲烷、超級寒流、潛在甲烷來源、溫室氣體、內陸養殖漁業
Potential CH4 sources, Super cold front, CH4, Emissions, Greenhouse gas, Fluxes, Inland aquaculture fisheries
統計
Statistics
本論文已被瀏覽 5813 次,被下載 42
The thesis/dissertation has been browsed 5813 times, has been downloaded 42 times.
中文摘要
甲烷是大氣中重要的溫室氣體之一,其全球暖化潛勢(GWP)為二氧化碳的28倍。最近研究顯示農畜牧業產生之甲烷相當可觀,而全球養殖漁業產量逐年攀升,但對於養殖漁業所排放之甲烷卻鮮少被探討。為了更佳瞭解養殖漁業甲烷之逸散量,本研究自2015年9月至2016年7月測量臺灣南部(高雄與屏東)養殖池之甲烷濃度及估算甲烷擴散通量。高雄養殖池之甲烷通量範圍為−2.0到256 μmol/m2/d(平均值:61 μmol/m2/d),而屏東養殖池之甲烷通量範圍為−2.4到449 μmol/m2/d(平均值:81 μmol/m2/d),兩地通量高值皆出現於春、秋兩季。另外也發現甲烷之高通量出現於收成後之養殖池底土(794±1,028 μmol/m2/d)、養殖池周遭排放水(7,407±9,237 μmol/m2/d)以及供應養殖池之地下水(1,494±1,789 mmol/m2/d)。這些甲烷通量對比於養殖池皆明顯高出1–2個數量級,突顯出養殖池外其他甲烷來源之重要性。然而本研究之甲烷通量大約比Yang et al. (2015)閩江養殖池量測之甲烷通量(平均值:2,400 μmol/m2/d)低約1個數量級,其差異可能為不同方法或其養殖密度太高所導致。同時也估算全臺灣養殖漁業之甲烷通量分別是養殖魚池:195 Tons CH4 / yr、養殖排放水:1,160 Tons CH4 / yr與地下水:118 Tons CH4 / yr。而在2016年初的超級寒流過後發現:不論養殖池水或是底土之甲烷通量皆有大幅度提升,該現象突顯出超級寒流對養殖池溫室氣體生成之影響。然而根據全臺漁貨產量之估算,養殖漁業一年大約可貢獻9千萬多噸之甲烷,遠高於我們的年實測值1500噸 (不考慮水體擾動) 或 3000噸 (考慮水體擾動) 甚多。總體而言,本研究為臺灣南部養殖漁業甲烷通量之初探,甲烷實際通量可能被低估。未來需要透過增加採樣頻率與對養殖池周邊不同環境進行長時間調查,才能夠更加精確的估算整體養殖漁業之甲烷逸散量。
Abstract
Methane (CH4) is one of the important greenhouse gases in the atmosphere, its global warming potential index (GWP) is 28 times higher than CO2. Recent studies have shown the most CH4 production are from agriculture and livestock farming. Aquaculture fisheries have been increasing globally, but CH4 emissions from those aquaculture ponds have seldom been studied. To better evaluate CH4 emissions from aquaculture fisheries, we measured methane fluxes and estimated CH4 emission in aquaculture ponds in southern Taiwan from 2015 to 2016. Fluxes of methane in aquaculture ponds in Kaohsiung and Pingtung ranged from −2.0 to 256 μmol/m2/d (Average: 61 μmol/m2/d) and −2.4 to 449 μmol/m2/d (Average: 81 μmol/m2/d), respectively with elevated methane fluxes in Spring and Fall. Moreover, high methane fluxes were found in sediments after harvest (794±1,028 μmol/m2/d), gutters along ponds (7,407±9,237 μmol/m2/d) and groundwater (1,494±1,789 mmol/m2/d). The methane fluxes of these sources were approximately 1–2 orders higher than methane fluxes in aquaculture ponds, indicating the importance of potential methane sources. As compared to similar aquaculture ponds, methane fluxes in this study are about an order lower than in Minjiang, China (Yang et al., 2015), while the difference between two investigations might be due to different sampling methods or aquaculture fish density difference. The estimated CH4 emissions in aquaculture fisheries in Taiwan are approximately 1,473 tons CH4 / yr, including aquaculture ponds (195 Tons CH4/yr), aquaculture wastewater of western Taiwan (1,160 Tons CH4/yr) and groundwater of Lin-bian (118 Tons CH4/yr). Elevated methane fluxes were found in aquaculture ponds after extreme weather events (Super cold front), demonstrating that EWE can significantly stimulate methane generation. According to Taiwan annual aquaculture production information, aquaculture fishery can contribute about 9 thousand tons of CH4 each year, which is higher than the measured methane emissions (1500 Tons CH4/yr, diffusion only;3,000 Tons CH4/yr, diffusion + water turbulence). Overall, it is a preliminary study of methane flux in south Taiwan aquaculture fishery, methane fluxes could be underestimated. It is needed to increase the sampling frequency and conduct long-term investigations in different surrounds near aquaculture ponds to better estimate CH4 emissions in different aquaculture fisheries in the future.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
圖目錄 ix
表目錄 xi
第1章、 緒論 1
1-1 前言 1
1-2 研究動機及目的 9
1-2.1 了解臺灣西南部養殖池及其潛在甲烷來源之通量 9
1-2.2 探討極端天氣事件對於甲烷通量之影響 9
第2章、 研究區域與方法 10
2-1 研究區域 10
2-2 研究方法 11
2-2.1邊界層濃度差異法 (Boundary Layer Equation–BLE) 11
2-2.2靜態箱法 (Static Chamber–STAT) 13
2-3 水質與氣體流量參數測定 15
2-4 甲烷樣品分析 15
第3章、 結果與討論 18
3-1 甲烷濃度 18
3-1.1大氣樣品甲烷平均濃度 18
3-1.2水體樣品甲烷平均濃度 27
3-1.3沉積物樣品甲烷平均濃度 46
3-2 甲烷通量 49
3-2.1邊界層濃度差異法 (BLE) 49
3-2.2靜態箱法 (STAT) 57
3-3 甲烷逸散量 60
第4章、 結論 66
第5章、 參考文獻 68
附錄一 I
附錄二 II
參考文獻 References
王樹倫、陳鎮東、張哲明 (1998) 台灣地區湖泊甲烷釋放量。海洋與湖沼(Oceanologia et Limnologia Sinica),第29卷,第5期,頁527-534。
行政院農業委員會 (1999) 飼料營養雜誌-台灣地下水抽取情況,共97頁。
行政院環境保護署 (2015) 中華民國國家溫室氣體清冊報告,共352頁。
林務局 (2006) 台灣的自然資源與生態資料庫 III 農林漁牧。行政院農業委員會,共217頁。
屏東縣主計處 (2014) 臺灣農業年報–農林漁牧。行政院農業委員會。
張裕彰 (2010) 台灣島上及週遭水域之CH4分佈。國立中山大學海洋地質及化學研究所碩士論文,共162頁。
曾筱君 (2005) 台灣週遭水域CH4和N2O的分佈。國立中山大學海洋地質及化學研究所碩士論文,共160頁。
黃志彬、楊磊、袁如馨 (2012) 台灣南部地區水產養殖業水資源永續發展對策。行政院國家科學委員會,共54頁。
黃愉珺 (2013) 台灣西南海域上部斜坡海底泥火山氣體來源及甲烷通量估算。 國立臺灣大學地質科學研究所碩士論文,共97頁。
漁業署 (2015) 全國養殖魚種放養量累計表。行政院農業委員會,共2頁。

Abe, S. D., Adams, D. D., & Galli, V. S. (2005) Sediment greenhouse gases (methane and carbon dioxide) in the Lobo-Broa Reservoir. Lakes & Reservoirs: Research and Management, 10, 201-209.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., & Enrich-Prast, A. (2011) Freshwater Methane Emissions Offset the Continental Carbon Sink. Science, 331, 50.
Berner, R. A. (1980) Early Diagenesis. A Theoretical Approach. Princeton University., 256.
Bousquet, S. P., Tyler, P., Peylin, R. G., Van Der Werf, C., Prigent, A. D., Hauglustaine, E. J., & Dlugokencky, B. J. (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439-443.
Cai, Z.-C. (1997). A category for estimate of CH4 emission from rice paddy fields in China. Nutrient Cycling in Agroecosystems, 49, 171-179.
Cancino-Madariaga, B., Hurtado, C. F., & Ruby, R. (2011) Effect of pressure and pH in ammonium retention for nanofiltration and reverse osmosis membranes to be used in recirculation aquaculture systems (RAS). Aquacultural Engineering, 45, 103-108.
Cao, S., Sun, G., Zhang, Z., Chen, L., Feng, Q., Fu, B., . . . Wei, X. (2011) Greening China Naturally. Royal Swedish Academy of Sciences, 40, 828-831.

Casper, P., Maberly, S. C., Hall, G. H., & Finlay, B. J. (2000). Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry, 49, 1-19.
Chang, T.-C., & Yang, S.-S. (2003) Methane emission from wetlands in Taiwan. Atmospheric Environment, 37, 4551-4558.
Crill, P. M., Bartlett, K. B., Harris, R. C., Gorham, E., Verry, E. S., Sebacher, D. I., . . . Sanner, W. (1988). Methane flux from minnesota peatlands. Global Biogeochemical Cycles, 2, 371-384.
Delsontro, T., Mcginnis, D. F., Sobek, S., Ostrovsky, I., & Wehrli, B. (2010). Extreme Methane Emissions from a Swiss Hydropower Reservoir : Contribution from Bubbling Sediments. Environmental Science & Technology, 44, 2419-2425.
Ding, W., Cai, Z., & Wang, D. (2004). Preliminary budget of methane emissions from natural wetlands in China. Atmospheric Environment, 38, 751-759.
Dlugokencky, J. E. (2016) NOAA/ESRL. Retrieved from ww.esrl.noaa.gov/gmd/ccgg/trends_ch4/.
Food and Agriculture Organization of the United Nations (FAO). (2012) The State of World Fisheries and Aquaculture, 230.
Food and Agriculture Organization of the United Nations (FAO). (2014) The State of World Fisheries and Aquaculture, 243.
Ferrón, S., Ortega, T., & Forja, J. M. (2009) Benthic fluxes in a tidal salt marsh creek affected by fish farm activities: Río San Pedro (Bay of Cádiz, SW Spain). Marine Chemistry, 113, 50-62.
Harriss, R. C., & Sebacher, D. I. (1981). Methane flux in forested freshwater swamps of the southeastern United States. Geophysical Research Letter, 8, 1002-1004.
Hirota, M., Senga, Y., Seike, Y., Nohara, S., & Kunii, H. (2007). Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere, 68, 597-603.
Hung, C. W., Huang, K. H., Shih, Y. Y., Lin, Y. S., Chen, H. H., Wang, C. C., Hung, C. C., & Burdige, D. (2016) Benthic fluxes of dissolved organic carbon in rich-gas hydrate sites in southern South China Sea. Scientific reports, 6, 29597; doi: 10.1038/srep29597.
Huttunen, J. T., Vaisanen, T. S., Hellsten, S. K., Heikkinen, M., Nykanen, H., Jungner, H., . . . Martikainen, P. J. (2002). Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Global Biogeochemical Cycles, 16, 1-17.
Intergovernmental Panel on Climate Change (IPCC). (2013) The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5).


Johnson, M. K., Hughes, E. J., Donaghay, L. P., & Sieburth, M. J. (1990) Bottle-calibration static head space method for the determination of methane dissolved in seawater. Analytical Chemistry, 62, 2408-2412.
Kling, G. W., Kipphut, G. W., & Miller, M. C. (1992). The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia, 240, 23-36.
Krithika, K., Purvaja, R., & Ramesh, R. (2008) Fluxes of methane and nitrous oxide from an Indian mangrove. CURRENT SCIENCE, 94, 218-224.
Lammers, S., & Suess, E. (1994) An improved head-space analysis method for methane in seawater. Marine Chemistry, 47, 115-125.
Mattson, M. D., & Likens, G. E. (1993). Redox reactions of organic matter decomposition in a soft water lake. Biogeochemistry, 19, 149-172.
McDermitt, D., Burba, G., Xu , L., Anderson, T., Komissarov, A., Riensche, B., . . . Zona , D. (2010) A new low-power, open-path instrument for measuring methane flux by eddy covariance. Springer, 102, 391-405.
Mosier, A.R. (1998) Soil processes and global change. Biol. Fertil. Soils, 27, 221-229.
Parkin, T. B., & Venterea, R. T. (2010) Sampling Protocols. Chapter 3. Chamber-Based Trace Gas Flux. IN Sampling Protocols, 3-1 to 3-39.
Pei, Z., Wang, D., Zhang , N., Wang, W., & Liu, J. (2009) Effect of Temperature on the Efficiency of Methanogenic Bacteria. Heilongjiang Agricultural Sciences, 59, 128-129.
Rask, H., Schoenau, J., & Anderson, D. (2002). Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology & Biochemistry, 34, 435-443.
Rolston, E. D. (1986) Gas flux. Agronomy, 9, 1103-1119.
Serrano-Grijalva, L., Sánchez-Carrillo, S., Angeler, D. G., Sánchez-Andrés, R., & Álvarez-Cobelas, M. (2011) Effects of shrimp-farm effluents on the food web structure in subtropical coastal lagoons. Journal of Experimental Marine Biology and Ecology, 402, 65-74.
Song, C., Yan, B., Wang, Y., Wang, Y., Lou , Y., & Zhao , Z. (2003). Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chinese Science Bulletin, 48, 2749-2753.
Tilbrook, B. D., & Karl, D. M. (1995) Methane Sources, Distributions and Sinks from California Coastal Waters to the Oligotrophic North Pacific Gyre. Marine Chemistry, 49, 51-64.
Wanninkhof, R. (1992) Relationship between wind speed and gas exchange over the ocean. Journal of geophysical research, 97, 7373–7382.
Wiesenburg, D. A., & Guinasso, N. L. (1979) Equilibrium Solubilities of Methane, Carbon Monoxide, and Hydrogen in Water and Sea Water. Journal of Chemical and Engineering Data, 24, 356-360.

Yagi, K., & Minami, K. (1990). Effect of Organic Matter Application on Methane Emission from Some Japanese Paddy Fields. Soil Science and Plant Nutrition, 36, 599-610.
Yagi, K., Chairoj, P., Tsuruta, H., Cholitkul, W., & Minami, K. (1994). Methane Emission from Rice Paddy Fields In the Central Plain of Thailand. Soil Science and Plant Nutrition, 40, 29-37.
Yamaji, K., Ohara, T., & Akimoto, H. (2003) A country-specific, high-resolution emission inventory for methane from livestock in Asia in 2000. Atmospheric Environment, 37, 4393-4406.
Yang, P., He, Q., Huang, J., & Tong, C. (2015) Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China. Atmospheric Environment, 115, 269-277.
Yang, S. S., & Chang, H. L. (2001) Methane emission from paddy fields in Taiwan. Biol Fertil Soils, 33, 157-165.
Yoshida, O., Inoue , H. Y., Watanabe, S., Noriki, S., & Wakatsuchi, M. (2004) Methane in the western part of the Sea of Okhotsk in 1998-2000. Journal of Geophysical Research, 109, 1-10.
Zhou, H., Yin, X., Yang, Q., & Wang, H. (2009) Distribution, source and flux of methane in the western Pearl River Estuary and northern South China Sea. Marine Chemistry, 117, 21-31.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code