Responsive image
博碩士論文 etd-0719116-140804 詳細資訊
Title page for etd-0719116-140804
論文名稱
Title
以Ag/TCO/Ag多層膜製備高穿透透明導電薄膜之研究
Fabricating high transmission transparent conductive thin films in Ag/TCO/Ag multilayer films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-08-19
關鍵字
Keywords
Cu/Ag/ITO/Cu/Ag 結構、Ag/ITO/Ag結構、三明治結構、ITO、透明導電膜
Ag/ITO/Ag structure, sandwich structure, Cu/Ag/ITO/Cu/Ag structure, ITO, Transparent conducting film
統計
Statistics
本論文已被瀏覽 5775 次,被下載 36
The thesis/dissertation has been browsed 5775 times, has been downloaded 36 times.
中文摘要
現今透明導電膜被應用在眾多高科技產品上,提供了各種生活上方便的運用,其中最熱門的透明導電膜為銦錫氧化物 (ITO),但因地球銦含量不足以支撐所需求的量,未來將會面臨到材料來源不足導致成本節節高升,因此尋求開發其他替代材料的研究越來越盛行。這些替代材料的研究包括尋找新的材料配方,或是使用複合結構以提升ITO性能等。
本研究中是以多層膜結構:例如使用兩層很薄的金屬層包覆透明氧化物(如同三明治一樣,金屬/透明導電氧化膜/金屬),以增加該薄膜的導電率,同時希望不要降低太多穿透率,來得到高品質的透明導電薄膜。透過多層膜結構以降低反射率,希望在薄膜中因為反射下降補償使用金屬膜本身光的損失,以維持適當的穿透率。由於金屬的導電率遠較一般透明導電膜材料(如ITO)之導電率高上許多,可產生一個低電阻但穿透率卻依然保持良好的透明導電膜。該結構使用在ITO上面可以降低ITO使用的用量,也可搭配其他透明導電膜時以改善電阻過大的性質。
當合適的厚度當配時,可使得可見光區間有最低反射的厚度。我們使用不同銀的厚度下比較穿透、反射及電阻值,來確定最理想的厚度。此外,我們的結果顯示,在這厚度區間,金屬層表面平整度對於電導度和光穿透度同時具有相當大的影響,因此成長高平整度的薄膜,方能製作高品質複合結構之透明導電膜。
Abstract
Nowadays, transparent conductive films (TCFs) are applied in many electronic devices to provide convenient life for us. The most popular transparent conductive film is indium tin oxide (ITO). However, since the abundance of indium in the earth is limited, the demand is greater than the supply; the price of indium has been rising. Therefore, the researches for alternative materials become more and more important; including looking for novel materials, as well as composite structures to reduce the consumption of ITO.
This research is to study the performance of multilayer structures that is to incorporate metal layers (e.g. Au, Ag and Cu) and transparent conducting oxides (e.g. ITO). One example is a sandwich structure of metal/TCO/metal, i.e. to use double layers of thin metal films on both sides of transparent conducting oxides. It is expected to decrease the electric resistivity without sacrificing much of transmittance. The thickness of each layer is designed to minimize the reflectivity, hence the transmissivity in the visible range is increased. Our results indicate that to incorporate metals in the multilayer structure, the electrical conductivity can be greatly increased, hence the usage of ITO is largely reduced. In addition, the structure can be also used in other transparent conducting oxides.
目次 Table of Contents
論文審定書i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Background and literature review 3
2.1 Transparent conducting films 3
2.1.1 Transparent metal thin films 3
2.1.2 Transparent conducting oxides 4
2.1.3 Characteristics of indium tin oxide (ITO) 5
2.2 Characteristics of silver (Ag) 6
2.2.1 Ag thin films 7
2.2.2 The scattering hypothesis 7
2.2.3 Localized plasmon resonance 8
2.3 Metal seed layer 9
2.3.1 Copper (Cu) seed layer 10
2.3.2 Characteristics of Cu 11
2.4 The heteroepitaxy growth mechanism 11
2.4.1 Frank-van der Merwe mode (layer by layer) 12
2.4.2 Stranski–Krastanov mode (layer plus island growth) 13
2.4.3 Volmer-Weber Mode (Iiland growth) 14
2.5 Haacke’s figure of merit 14
2.6 Metal/transparent conductive oxide/Metal (M/TCO/M) structure 16
2.6.1 TCO/M/TCO structure 16
2.6.2 M/TCO/M structure 16
Chapter 3 Experimental procedures 17
3.1 Materials design 17
3.1.1 Transparent conductive film 17
3.1.2 Metal 18
3.2 Substrate preparation 18
3.3 Film preparation 19
3.3.1 Thin films growth 19
3.4 Properties measurement and analysis 21
3.4.1 3D alpha-step profilometer (-step) 21
3.4.2 n & k analyzer 21
3.4.3 Four-point probe 22
3.4.4 Scanning electron microscopy (SEM) 23
3.4.5 Essential Macleod 23
Chapter 4 Results and discussion 25
4.1 Silver layer of the multilayer system 25
4.1.1 Optical constant of silver (copper) thin film 25
4.1.2 Surface roughness of silver (copper) thin film 26
4.1.3 Electrical properties of silver (copper) thin film 27
4.1.4 Optical loss of silver (copper) thin film 27
4.2 Middle layer thickness design 28
4.2.1 Thickness design 28
4.3 Optical and electrical properties of M/ITO (Cu/Ag/ITO) 29
4.3.1 Optical spectrum of Cu/Ag/ITO 30
4.3.2 Electrical properties of Cu/Ag/ITO 30
4.3.3 Figure of merit of Cu/Ag/ITO 31
4.4 Optical and electrical properties of M/ITO/M (Cu/Ag/ITO/Cu/Ag) 31
4.4.1 Optical spectrum of Cu/Ag/ITO/Cu/Ag 32
4.4.2 Electrical properties of Cu/Ag/ITO/Cu/Ag 32
4.4.3 Figure of merit of Cu/Ag/ITO/Cu/Ag 33
4.4.4 Comparison of simulations and results 34
4.4.5 Cu/Ag/ITO/Cu/Ag top views by SEM 34
Chapter 5 Conclusion 36
References 37
Tables 39
Figures 43
參考文獻 References
[1] D. S. Hecht, L. Hu and G. Irvin, Adv. Mater., 23 (2011) 1482-1513.
[2] T. Minami, Semicond. Sci. and Technol., 20 (2005) 35-44.
[3] C. Trejo-Cruza, A. Mendoza-Galvána, A. López-Beltrána and M. Gracia-Jiménezc, Thin Solid Films, 517 (2009) 4615-4620.
[4] H. W. Edwards and R. P. Petersen, Phys. Rev., 50 (1936) 871.
[5] C. Charton and M. Fahland, Surf. Coat. Technol., 174 -175 (2003) 181-186.
[6] C. Charton and M. Fahland, Surf. Coat. Technol., 142 -144 (2001) 175-180.
[7] Thin metal films and gas chemisorption, edited by P. Wissmann. , Elsevier, Amsterdam (1987), p. 53.
[8] P. Wissmann and H.-U. Finzel, Electrical Resistivity of Thin Metal Films, Springer-Verlag Berlin (2007), pp. 3.
[9] J. Bulíř, M. Novotný, A. Lynnykova and J. J. Lančok, J. Nanophoton., 5 (2011) 051511.
[10] N. Formica, D. S. Ghosh, A. Carrilero, T. –L. Chen, R. E. Simpson and V. Pruneri, ACS Appl. Mater. Interfaces, 5 (2013) 3048–3053.
[11] K. Fukuda, S. Lim and A. Anders, Thin Solid Films, 516 (2008) 4546–4552.
[12] A. Anders, E. Byon, D. H. Kim, K. Fukuda and S. H. N. Limet, Solid State Commun., 140 (2006) 225-229.
[13] L. VJ, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang and R. S. Williams, Nano Lett., 9 (2009) 178-182.
[14] K. Kendall, J. Phys. D: Appl. Phys., 23 (1990) 1329−1331.
[15] R. J. Jaccodine, J. Electrochem. Soc., 110 (1963) 524−527.
[16] J. N. Israelachvili, Intermolecular and Surface Forces, Elsevier, Amsterdam (1992), pp. 196, 275, 280, 415.
[17] Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton (2002), pp. 65, 67. 68.
[18] Website: https://en.wikipedia.org/wiki/Copper.
[19] M. Schreck, F. Hörmann, H. Roll1, J. K. N. Lindner and B. Stritzkeret, Appl. Phys. Lett., 78 (2001) 192-194.
[20] K.-N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science: For
Electrical Engineers and Materials Scientists, Macmillan, New York (1992), pp. 167-168.
[21] K. Oura, V. Lifshits, A. Saranin, A. Zotov and M. Katayama, Surface Science: An Introduction, Springer-Verlag, Berlin (2003), p. 452.
[22] D. Fraser and H. Cook, J. Electrochem. Soc., 119 (1972) 1368-1374.
[23] G. Haacke, J. Appl. Phys., 47 (1976) 4086-4089.
[24] J. Szczyrbowski, G. Bräuer, M. Ruske, H. Schilling, A. Zmelty, Thin Solid Films, 351 (1999) 254-259.
[25] P. Grosse, R. Hertling, T. Müggenburg, J. Non-Cryst Solids., 218 (1997) 38-43.
[26] Refractive index INFO website: http://refractiveindex.info.
[27] Website: http://www.thinfilmcenter.com/essential.html
[28] E. Palik, Handbook of the Optical Constants of Solids, Academic Press, USA (1985), p. 283.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code