Responsive image
博碩士論文 etd-0719116-155530 詳細資訊
Title page for etd-0719116-155530
論文名稱
Title
極細鍺奈米線之機械、熱學與電子性質研究
Mechanical, Thermal and Electronic Properties of Ultrathin Germanium Nanowires
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-19
關鍵字
Keywords
鋰離子、鍺奈米線、密度泛函理論、分子動力學、Stillinger-Weber 勢能函數、Basin-hopping 方法
molecular dynamics, Li ion, nudged elastic band method, germanium nanowire, density functional theory, Stillinger-Weber potential, basin-hopping method
統計
Statistics
本論文已被瀏覽 5672 次,被下載 672
The thesis/dissertation has been browsed 5672 times, has been downloaded 672 times.
中文摘要
本論文使用Big-Bang方法結合Basin-hopping方法,搭配Stillinger-Weber勢能函數預測極細鍺奈米線結構,並使用密度泛函理論驗證鍺奈米線的穩定性。得到穩定的奈米線結構後,在利用量子力學與分子力學計算探討其各項性質,例如: 熱性質、機械性質與電子性質等。除了鍺奈米線本身的物理性質之外,也探討鋰離子在鍺奈米線上的吸附與擴散行為。在熱性質方面,我們計算了鍺奈米線的聲子態密度 (Density of state, DOS) 圖譜並與塊材做比較。透過分子動力學計算預測了四條奈米線的熔點,有三條鍺奈米線 (helix, pentagon, hexagon) 的預估熔點大約是385~450 K,其中7-1鍺奈米熔點為230 K,表示此奈米線無法在室溫下穩定。由於7-1奈米線的熱穩定較差,在探討機械性質以及鋰離子吸附與擴散行為時,就不將此線列入考慮。在機械性質方面,極細鍺奈米線的降伏應力與楊氏模數皆大於塊材鍺。而且也發現溫度對於機械性質會有影響,但是溫度越高影響力就越小,其中機械性質最佳者為Pentagon奈米線。電子性質方面,藉由分析鍺奈米線的電子態密度,可以瞭解奈米線的軌域分佈情形。結果顯示,由於奈米線的特殊結構導致庫倫遮罩效應較少,而且又結合量子效應,最後奈米線的能帶結構橫跨費米能級變成導體。而且軌域上的電子受到較大的庫倫作用力,所以有嚴重的能帶分裂現象。在鋰離子於鍺奈米線上的吸附與擴散行為方面,發現極細鍺奈米線在吸附鋰離子時能比吸附在石墨或石墨烯上穩定。此外,也發現奈米線在吸附鋰離子時比較不會有膨脹現象,這表示當鋰離子吸附與脫附時,奈米線的結構變化不會太嚴重。而鋰離子在pentagon奈米線表面上的H3-H3吸附位置間的擴散擁有最低的能障,大約為0.526 eV,與其他鋰電池的電極材料相近。
Abstract
In this study, the structure of four ultrathin germanium nanowires (GeNWs) were predicted by big-bang method combined with basin-hopping method and Stillinger-Weber potential. The thermal, mechanical and electronic properties of the GeNWs were further examined by density functional theory (DFT) and molecular mechanics. Not only the physical properties of GeNWs but also the absorption and diffusion behaviors of Li ion on GeNWs were investigated. For thermal properties, the phonon densities of states (PDOS) of four GeNWs were calculated, and the melting points of GeNWs were also predicted by molecular dynamics (MD) simulation. There are three types of GeNWs (helix, pentagon, hexagon) can remain about 400 K, but the 7-1 GeNW is melted about 230 K, which indicates that 7-1 GeNW is unstable at room temperature. Therefore, the 7-1 GeNW was excluded from post simulations and disccustions. In mechanical properties of GeNWs, the yielding stress and Young’s modules of GeNWs are greater than that of bulk Ge. The thermal effect on mechanical properties of GeNWs are also investigated, and the pentagon GeNW exhibits the best mechanical properties among these three GeNWs. In the electronic properties, the electron density of state (DOS) of GeNWs was calculated by DFT to understand orbital hybridization. The result shows that the energy bands of GeNWs shift up to cross the Fermi-level and resulting in conducting nanowires due to the less Coulomb screening effect and quantum confinement from nanowire structure. In addition, the energy band of GeNWs will exhibit significant splitting if which orbital electrons suffer from large Coulomb interactions. For the adsorption and diffustion behavior of Li ion on GeNWs, the various of adsorption sites and which corresponding adsorption energy have been calculated. The absorption energy of Li ion absorption on GeNWs are more stable than that on graphit or graphene. The barrier and transition states of Li ion diffusion on GeNWs were studied by the nudged elastic band (NEB) method, and the results show that the diffusion barrier of Li ion on GeNWsare similar with other material of Li ion battery electrode. The Li ion diffusion on the surface of pentagon GeNW between H3 and H3 adsorption sites with the lowest barrier, which only around 0.526 eV.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
中文摘要 iv
英文摘要 v
目錄 vii
圖次 ix
表次 xii
第一章 緒論 1
1.1 研究目的與動機 1
1.2 鍺奈米線文獻回顧 3
1.3 本文架構 9
第二章 模擬方法與理論介紹 10
2.1 分子靜力學方法 10
2.1.1 Big-bang方法 10
2.1.2 Basin-hopping方法 11
2.1.3 勢能函數 13
2.1.4 虛擬壁面 15
2.2 密度泛函理論 (Density functional theory, DFT) 17
2.2.1 多粒子系統薛丁格方程式 18
2.2.2 波恩-歐本海默近似 (Born-Oppenheimer approximation) 19
2.2.3 電子密度 20
2.2.4 托瑪斯-費米模型 (Thomas-Fermi model) 21
2.2.5 霍恩貝格-科恩理論 (Hohenberg-Kohn model) 22
2.2.6 科恩-軒姆方程式 (Kohn-Sham equation) 24
2.2.7 交換相關函數 (Exchange-Correlation Function) 26
2.3 分子動力學理論基礎及方法 29
2.3.1 積分法則 30
2.3.2 時間步階選取 (Time step) 31
2.3.3 系綜 (Ensemble) 32
2.3.4 諾斯-胡佛恆溫法 (Nosé-Hoover) 33
2.4 原子級應力分析 35
2.5 NEB方法 (Nudged elastic band method) 39
2.6 分析方法 41
2.6.1 原子距離變化量統計 (∆R) 41
2.6.2 吸附能 (Adsorption energy) 42
第三章 結果與討論 43
3.1 物理模型之建構 44
3.2 鍺奈米線之熱穩定性質分析 49
3.3 鍺奈米線之機械性質分析 54
3.4 鍺奈米線之電子性質分析 68
3.5 鍺奈米線之鋰離子吸附性質分析 75
3.6 鍺奈米線之鋰離子擴散性質分析 85
第四章 結論與建議 91
4.1 結論與建議 91
4.2 未來展望 93
參考文獻 94
參考文獻 References
[1] 江元生, "結構化學," 五南圖書出版, p. 81, 1998.
[2] M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, "Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0. DEG. C," Chemistry Letters, pp. 405-408, 1987.
[3] 董慕愷, "奈米金簇媒," 科學發展, p. 390, 2005.
[4] 陳洋元與陳正龍, "奈米科學在能源與生醫的應用," 物理雙月刊, vol. 32, pp. 91-96, 2010.
[5] 鄭雅傑與劉昭成, "氧化鐵的製備方法及其應用," 粉末冶金材料科學與工程, vol. 12, pp. 197-201, 2007.
[6] J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber, "Nanowire nanocomputer as a finite-state machine," Proceedings of the National Academy of Sciences, vol. 111, pp. 2431-2435, 2014.
[7] T. Maeda, K. Ikeda, S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, et al., "High mobility Ge-on-insulator p-channel MOSFETs using Pt germanide Schottky source/drain," IEEE electron device letters, vol. 26, pp. 102-104, 2005.
[8] T. Kennedy, E. Mullane, H. Geaney, M. Osiak, C. O’Dwyer, and K. M. Ryan, "High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network," Nano letters, vol. 14, pp. 716-723, 2014.
[9] C. Wang, J. Ju, Y. Yang, Y. Tang, J. Lin, Z. Shi, et al., "In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties," Journal of Materials Chemistry A, vol. 1, pp. 8897-8902, 2013.
[10] W. Zhou, X. Dai, T.-M. Fu, C. Xie, J. Liu, and C. M. Lieber, "Long term stability of nanowire nanoelectronics in physiological environments," Nano letters, vol. 14, pp. 1614-1619, 2014.
[11] Y. Zhao, J. T. Smith, J. Appenzeller, and C. Yang, "Transport Modulation in Ge/Si Core/Shell Nanowires through Controlled Synthesis of Doped Si Shells," Nano letters, vol. 11, pp. 1406-1411, 2011.
[12] M. C. Wingert, Z. C. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, et al., "Thermal conductivity of Ge and Ge–Si core–shell nanowires in the phonon confinement regime," Nano letters, vol. 11, pp. 5507-5513, 2011.
[13] B.-M. Nguyen, Y. Taur, S. T. Picraux, and S. A. Dayeh, "Diameter-independent hole mobility in Ge/Si core/shell nanowire field effect transistors," Nano letters, vol. 14, pp. 585-591, 2014.
[14] C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, "Germanium MOS capacitors incorporating ultrathin high-/spl kappa/gate dielectric," IEEE Electron Device Letters, vol. 23, pp. 473-475, 2002.
[15] B. Yu, X. Sun, G. Calebotta, G. Dholakia, and M. Meyyappan, "One-dimensional germanium nanowires for future electronics," Journal of Cluster Science, vol. 17, pp. 579-597, 2006.
[16] Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, "Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices," Applied physics letters, vol. 59, pp. 3168-3170, 1991.
[17] G. H. Rieke, "Infrared detector arrays for astronomy," Annu. Rev. Astron. Astrophys., vol. 45, pp. 77-115, 2007.
[18] J. Robert D. Brown, "GERMANIUM," U.S. GEOLOGICAL SURVEY MINERALS YEARBOOK, p. 33.1, 2000.
[19] Q. Cai, L. Ye, B. Xu, Z. Di, Q. Jin, and J. Zhao, "Fabrication and biochemical sensing applications of controllable germanium nanowires array," in Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers-2015 18th International Conference on, 2015, pp. 510-513.
[20] S. M. Shaby, M. G. Premi, and B. Martin, "Enhancing the Performance of MEMS Piezoresistive Pressure Sensor Using Germanium Nanowire," Procedia Materials Science, vol. 10, pp. 254-262, 2015.
[21] U. K. Thiele, "The current status of catalysis and catalyst development for the industrial process of poly (ethylene terephthalate) polycondensation," International Journal of Polymeric Materials, vol. 50, pp. 387-394, 2001.
[22] A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science, vol. 279, pp. 208-211, 1998.
[23] B.-S. Kim, M. J. Kim, J. C. Lee, S. W. Hwang, B. L. Choi, E. K. Lee, et al., "Control of lateral dimension in metal-catalyzed germanium nanowire growth: Usage of carbon sheath," Nano letters, vol. 12, pp. 4007-4012, 2012.
[24] R. C. Gouveia, H. Kamimura, A. de Giovanni Rodrigues, and A. J. Chiquito, "Synthesis and characterization of crystalline germanium nanowires grown from Ag-based catalysts," in Nanotechnology Materials and Devices Conference (NMDC), 2014 IEEE 9th, 2014, pp. 84-87.
[25] B. Aksoy, Y. E. Kalay, and H. E. Unalan, "Germanium nanowire synthesis using solid precursors," Journal of Crystal Growth, vol. 392, pp. 20-29, 2014.
[26] H. Geaney, C. Dickinson, C. A. Barrett, and K. M. Ryan, "High density germanium nanowire growth directly from copper foil by self-induced solid seeding," Chemistry of Materials, vol. 23, pp. 4838-4843, 2011.
[27] M. Simanullang, K. Usami, T. Kodera, Y. Kawano, and S. Oda, "Microscopic study of germanium nanowires grown via gold-catalyzed chemical vapor deposition below the eutectic temperature," Journal of crystal growth, vol. 384, pp. 77-81, 2013.
[28] H. Adhikari, A. F. Marshall, C. E. Chidsey, and P. C. McIntyre, "Germanium nanowire epitaxy: Shape and orientation control," Nano letters, vol. 6, pp. 318-323, 2006.
[29] Y. Wu and P. Yang, "Germanium nanowire growth via simple vapor transport," Chemistry of Materials, vol. 12, pp. 605-607, 2000.
[30] J. Schmidtbauer, R. Bansen, R. Heimburger, T. Teubner, T. Boeck, and R. Fornari, "Germanium nanowire growth controlled by surface diffusion effects," Applied Physics Letters, vol. 101, p. 043105, 2012.
[31] D. A. Smith, V. C. Holmberg, and B. A. Korgel, "Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric," ACS nano, vol. 4, pp. 2356-2362, 2010.
[32] D. A. Smith, V. C. Holmberg, D. C. Lee, and B. A. Korgel, "Young’s modulus and size-dependent mechanical quality factor of nanoelectromechanical germanium nanowire resonators," The Journal of Physical Chemistry C, vol. 112, pp. 10725-10729, 2008.
[33] C. K. Chan, X. F. Zhang, and Y. Cui, "High capacity Li ion battery anodes using Ge nanowires," Nano Letters, vol. 8, pp. 307-309, 2008.
[34] A. M. Chockla, K. C. Klavetter, C. B. Mullins, and B. A. Korgel, "Solution-grown germanium nanowire anodes for lithium-ion batteries," ACS applied materials & interfaces, vol. 4, pp. 4658-4664, 2012.
[35] M.-H. Seo, M. Park, K. T. Lee, K. Kim, J. Kim, and J. Cho, "High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries," Energy & Environmental Science, vol. 4, pp. 425-428, 2011.
[36] K. Ikeda, Y. Kamimuta, Y. Moriyama, M. Ono, M. Oda, T. Irisawa, et al., "Strained germanium nanowire MOSFETs," in Silicon-Germanium Technology and Device Meeting (ISTDM), 2014 7th International, 2014, pp. 3-4.
[37] J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, et al., "Direct Bandgap Light Emission from Strained Germanium Nanowires Coupled with High-Q Nanophotonic Cavities," Nano letters, vol. 16, pp. 2168-2173, 2016.
[38] R. Peköz and J.-Y. Raty, "From bare Ge nanowire to Ge/Si core/shell nanowires: A first-principles study," Physical Review B, vol. 80, p. 155432, 2009.
[39] D. Medaboina, V. Gade, S. Patil, and S. Khare, "Effect of structure, surface passivation, and doping on the electronic properties of Ge nanowires: A first-principles study," Physical Review B, vol. 76, p. 205327, 2007.
[40] P. Logan and X. Peng, "Strain-modulated electronic properties of Ge nanowires: A first-principles study," Physical Review B, vol. 80, p. 115322, 2009.
[41] J. Lee and M. Shin, "Simulation study of germanium p-type nanowire Schottky barrier MOSFETs," IEEE Electron Device Letters, vol. 34, pp. 342-344, 2013.
[42] J. Chen, G. Zhang, and B. Li, "Impacts of atomistic coating on thermal conductivity of germanium nanowires," Nano letters, vol. 12, pp. 2826-2832, 2012.
[43] Y. A. Kosevich, A. V. Savin, and A. Cantarero, "Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons," Nanoscale research letters, vol. 8, pp. 1-4, 2013.
[44] L. Hui, B. Wang, J. Wang, and G. Wang, "Local atomic structures of palladium nanowire," The Journal of chemical physics, vol. 121, pp. 8990-8996, 2004.
[45] Y. Kondo and K. Takayanagi, "Synthesis and characterization of helical multi-shell gold nanowires," Science, vol. 289, pp. 606-608, 2000.
[46] K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, and A. A. Shvartsburg, "Unraveling the shape transformation in silicon clusters," Physical review letters, vol. 93, p. 013401, 2004.
[47] D. J. Wales and J. P. Doye, "Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms," The Journal of Physical Chemistry A, vol. 101, pp. 5111-5116, 1997.
[48] S. S. a. N. Tripathi, K. S., "Optimization Using Conjugate Gradient Methods,," IEEE Transactions on Automatic Control, vol. AC-15, 1970.
[49] J. E. Lennard-Jones, "Cohesion," Proceedings of the Physical Society, vol. 43, p. 461, 1931.
[50] L. A. Girifalco and V. G. Weizer, "Application of the Morse potential function to cubic metals," Physical Review, vol. 114, p. 687, 1959.
[51] M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals," Physical Review B, vol. 29, p. 6443, 1984.
[52] J. Tersoff, "New empirical approach for the structure and energy of covalent systems," Physical Review B, vol. 37, p. 6991, 1988.
[53] F. H. Stillinger and T. A. Weber, "Computer simulation of local order in condensed phases of silicon," Physical review B, vol. 31, p. 5262, 1985.
[54] K. Ding and H. C. Andersen, "Molecular-dynamics simulation of amorphous germanium," Physical Review B, vol. 34, p. 6987, 1986.
[55] K. Nordlund, M. Ghaly, R. Averback, M. Caturla, T. D. de La Rubia, and J. Tarus, "Defect production in collision cascades in elemental semiconductors and fcc metals," Physical Review B, vol. 57, p. 7556, 1998.
[56] M. Posselt and A. Gabriel, "Atomistic simulation of amorphous germanium and its solid phase epitaxial recrystallization," Physical Review B, vol. 80, p. 045202, 2009.
[57] Z. Wang and D. Stroud, "Monte Carlo studies of liquid semiconductor surfaces: Si and Ge," Physical Review B, vol. 38, p. 1384, 1988.
[58] Z. Jian, Z. Kaiming, and X. Xide, "Modification of stillinger-weber potentials for si and ge," Physical Review B, vol. 41, p. 12915, 1990.
[59] D. Hartree, "The wave mechanics of an atom with a non-coulomb central field. Part IV. Further results relating to terms of the optical spectrum," in Mathematical Proceedings of the Cambridge Philosophical Society, 1929, pp. 310-314.
[60] D. R. Hartree, "The wave mechanics of an atom with a non-Coulomb central field. Part II. Some results and discussion," in Mathematical Proceedings of the Cambridge Philosophical Society, 1928, pp. 111-132.
[61] D. R. Hartree, "The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods," in Mathematical Proceedings of the Cambridge Philosophical Society, 1928, pp. 89-110.
[62] R. G. Parr, "Density functional theory of atoms and molecules," in Horizons of Quantum Chemistry, ed: Springer, 1980, pp. 5-15.
[63] M. Born and W. Heisenberg, "Zur quantentheorie der molekeln," Annalen der Physik, vol. 379, pp. 1-31, 1924.
[64] M. Born and R. Oppenheimer, "Zur quantentheorie der molekeln," Annalen der Physik, vol. 389, pp. 457-484, 1927.
[65] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Physical review, vol. 136, p. B864, 1964.
[66] A. Rajagopal and J. Callaway, "Inhomogeneous electron gas," Physical Review B, vol. 7, p. 1912, 1973.
[67] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical review, vol. 140, p. A1133, 1965.
[68] D. M. Ceperley and B. Alder, "Ground state of the electron gas by a stochastic method," Physical Review Letters, vol. 45, p. 566, 1980.
[69] A. D. Becke, "A multicenter numerical integration scheme for polyatomic molecules," The Journal of Chemical Physics, vol. 88, pp. 2547-2553, 1988.
[70] J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh, et al., "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol. 46, p. 6671, 1992.
[71] J. P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy," Physical Review B, vol. 45, p. 13244, 1992.
[72] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, vol. 77, p. 3865, 1996.
[73] B. Hammer, L. B. Hansen, and J. K. Nørskov, "Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals," Physical Review B, vol. 59, p. 7413, 1999.
[74] A. D. Boese and N. C. Handy, "A new parametrization of exchange–correlation generalized gradient approximation functionals," The Journal of Chemical Physics, vol. 114, pp. 5497-5503, 2001.
[75] E. Fermi, J. Pasta, and S. Ulam, "Studies of nonlinear problems," Los Alamos Report LA-1940, vol. 978, 1955.
[76] B. J. Alder and T. E. Wainwright, "Studies in Molecular Dynamics. I. General Method," The Journal of Chemical Physics, vol. 31, pp. 459-466, 1959.
[77] A. Rahman, "Correlations in the motion of atoms in liquid argon," Physical Review, vol. 136, p. A405, 1964.
[78] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of chemical physics, vol. 81, pp. 511-519, 1984.
[79] A. R. Leach, Molecular modelling: principles and applications: Pearson education, 2001.
[80] D. Frenkel and B. Smit, "Understanding molecular simulation: from algorithms to applications," Computational sciences series, vol. 1, pp. 1-638, 2002.
[81] W. G. Hoover, "Canonical dynamics: equilibrium phase-space distributions," Physical review A, vol. 31, p. 1695, 1985.
[82] N. Chandra, S. Namilae, and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects," Physical Review B, vol. 69, p. 094101, 2004.
[83] N. Tokita, M. Hirabayashi, C. Azuma, and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," The Journal of chemical physics, vol. 120, pp. 496-505, 2004.
[84] D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, "Structural defects in amorphous solids statistical analysis of a computer model," Philosophical Magazine A, vol. 44, pp. 847-866, 1981.
[85] J. Lutsko, "Stress and elastic constants in anisotropic solids: molecular dynamics techniques," Journal of Applied Physics, vol. 64, pp. 1152-1154, 1988.
[86] K. S. Cheung and S. Yip, "Atomic‐level stress in an inhomogeneous system," Journal of Applied Physics, vol. 70, pp. 5688-5690, 1991.
[87] N. Miyazaki and Y. Shiozaki, "Calculation of mechanical properties of solids using molecular dynamics method," JSME international journal. Ser. A, Mechanics and material engineering, vol. 39, pp. 606-612, 1996.
[88] H. Rafii-Tabar, "Computational modelling of thermo-mechanical and transport properties of carbon nanotubes," Physics Reports, vol. 390, pp. 235-452, 2004.
[89] A. Ulitsky and R. Elber, "A new technique to calculate steepest descent paths in flexible polyatomic systems," The Journal of chemical physics, vol. 92, pp. 1510-1511, 1990.
[90] G. Mills, H. Jónsson, and G. K. Schenter, "Reversible work transition state theory: application to dissociative adsorption of hydrogen," Surface Science, vol. 324, pp. 305-337, 1995.
[91] G. Henkelman, B. P. Uberuaga, and H. Jónsson, "A climbing image nudged elastic band method for finding saddle points and minimum energy paths," The Journal of chemical physics, vol. 113, pp. 9901-9904, 2000.
[92] H.-T. Chen, D. G. Musaev, and M. Lin, "Adsorption and Dissociation of CO x (x= 1, 2) on W (111) Surface: A Computational Study," The Journal of Physical Chemistry C, vol. 112, pp. 3341-3348, 2008.
[93] R. Liu, "Adsorption and dissociation of H 2 O on Au (111) surface: A DFT study," Computational and Theoretical Chemistry, vol. 1019, pp. 141-145, 2013.
[94] G. Mills and H. Jónsson, "Quantum and thermal effects in H 2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems," Physical review letters, vol. 72, p. 1124, 1994.
[95] M. Pozzo and D. Alfè, "Hydrogen dissociation on Mg (0001) studied via quantum Monte Carlo calculations," Physical Review B, vol. 78, p. 245313, 2008.
[96] M. Villarba and H. Jónsson, "Atomic exchange processes in sputter deposition of Pt on Pt (111)," Surface science, vol. 324, pp. 35-46, 1995.
[97] A. Worthing, "Atomic heats of tungsten and of carbon at incandescent temperatures," Physical Review, vol. 12, p. 199, 1918.
[98] K. Huber and G. Herzberg, "Constants of Diatomic Molecules, Molecular Spectra and Molecular Structure Vol. IV," ed: Van Nostrand Reinhold, New York, 1979.
[99] T. Matsuda and T. Kizuka, "Structure of nanometer-sized palladium contacts and their mechanical and electrical properties," Japanese Journal of Applied Physics, vol. 46, p. 4370, 2007.
[100] G. Nelin and G. Nilsson, "Phonon density of states in germanium at 80 K measured by neutron spectrometry," Physical Review B, vol. 5, p. 3151, 1972.
[101] J. Wortman and R. Evans, "Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium," Journal of applied physics, vol. 36, pp. 153-156, 1965.
[102] F. Valencia, A. H. Romero, F. Ancilotto, and P. L. Silvestrelli, "Lithium adsorption on graphite from density functional theory calculations," The Journal of Physical Chemistry B, vol. 110, pp. 14832-14841, 2006.
[103] K. T. Chan, J. Neaton, and M. L. Cohen, "First-principles study of metal adatom adsorption on graphene," Physical Review B, vol. 77, p. 235430, 2008.
[104] H. Zhang, M. Zhao, X. He, Z. Wang, X. Zhang, and X. Liu, "High mobility and high storage capacity of lithium in sp–sp2 hybridized carbon network: the case of graphyne," The Journal of Physical Chemistry C, vol. 115, pp. 8845-8850, 2011.
[105] C.-Y. Chou, M. Lee, and G. S. Hwang, "A Comparative First-Principles Study on Sodiation of Silicon, Germanium, and Tin for Sodium-Ion Batteries," The Journal of Physical Chemistry C, vol. 119, pp. 14843-14850, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code