Responsive image
博碩士論文 etd-0719118-014257 詳細資訊
Title page for etd-0719118-014257
論文名稱
Title
具超薄通道之多晶矽無接面電晶體的異常超陡峭次臨界擺幅研究
A Study of the Abnormal Ultra-Sharp Subthreshold Swing of the Polycrystalline-Silicon Junctionless Thin-Film Transistor With Ultra-Thin Channel Thickness
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-30
繳交日期
Date of Submission
2018-08-19
關鍵字
Keywords
超薄通道、多晶矽無接面電晶體、次臨界擺幅低於60 mV/dec.
subthreshold swing (S.S.) of less than 60 mV/dec., Polycrystalline Silicon Junctionless transistor, ultra-thin channel
統計
Statistics
本論文已被瀏覽 5729 次,被下載 0
The thesis/dissertation has been browsed 5729 times, has been downloaded 0 times.
中文摘要
在本論文中,顯示平面結構的多晶矽無接面薄膜電晶體在通道厚度極薄,約為1.5 nm並施加較大汲極電壓時,可以表現出次臨界擺幅小於60 mV/dec.的現象。不同於一般多晶矽無接面薄膜電晶體,本篇元件為隨汲極電壓增大,臨界電壓有正向偏移的異常行為,且在較大汲極電壓可以提取較小的次臨界擺幅。在汲極電壓為3.0V時可以得到次臨界擺幅最小值約為30 mV/dec.,這是目前文獻中的最低紀錄,而此現象歸因於在關閉狀態時汲極側邊的高橫向電場導致的碰撞游離效應;而橫向電場隨通道厚度的減小而增加,因此當通道厚度較薄時,碰撞游離效應更加顯著。
除此之外,也討論多晶矽無接面薄膜電晶體的短通道效應,隨著通道長度的減小,臨界電壓也隨之減小且次臨界擺幅劣化。對於通道長度較短之元件,並不會發生碰撞游離效應,無法獲得次臨界擺幅低於60 mV/dec.。無論通道長度較長或較短,元件的短通道各項參數似乎因為通道厚度太薄且受到量子效應的關係,並沒有明顯改變。本論文為多晶矽無接面薄膜電晶體提出了一個新的概念,有助於無接面電晶體的發展以及未來在面板產品與3D積體電路的應用。
Abstract
In this thesis, a polycrystalline silicon junctionless thin film transistor (Poly-JLTFT) with a planar structure exhibits a subthreshold swing (S.S.) of less than 60 mV/dec. when the channel thickness is extremely thin, about 1.5 nm, and a large drain voltage is applied. Different from the general Poly-JLTFT, this device is an abnormal behavior in which the threshold voltage has a positive shift as the voltage of the drain increases, and a smaller subthreshold swing can be extracted at a larger drain voltage. The minimum of the subthreshold swing (S.S.min) is about 30 mV/dec. when the drain voltage is 3.0V, which is the lowest record in the current literature. This phenomenon is attributed to the impact ionization caused by the high lateral electric field at the drain side at off-state. The lateral electric field increases as the thickness of the channel decreases, so the impact ionization effect is more pronounced when the channel thickness is thinner.
In addition, the short channel effect of the Poly-JLTFT is also discussed. As the channel length decreases, the threshold voltage also decreases and the S.S. degrades. For devices with short channel lengths, impact ionization does not occur and S.S. below 60 mV/dec. are not available. The electrical parameters of Poly-JLTFT with thinner channel thickness show similar length dependent effect to the deivce with thicker channel film. It may due to the quantum effect of ultra-thin channel film.
This work presents a new concept for polycrystalline silicon junctionless thin film transistors, which contributes to the development of junctionless transistors and future applications in panel products and 3D integrated circuits.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
第一章 緒論與介紹 1
1.1 前言 1
1.2 薄膜電晶體 (Thin Film Transistor, TFT) 1
1.2.1 固態矽 (Type of Solids) 2
1.2.2 多晶矽薄膜電晶體(Poly-Si Thin Film Transistor, Poly-Si TFT) 2
1.3 短通道效應 (Short Channel Effect) 4
1.3.1 臨界電壓滾降 (Threshold Voltage Roll-Off) 4
1.3.2 汲極引致能障降低 (Drain-induced Barrier Lowing, DIBL) 4
1.3.3 擊穿崩潰 (Punch Through) 5
1.4 無接面電晶體 (Junctionless Transistor, JLT) 5
1.4.1 無接面電晶體 (Junctionless Transistor) 5
1.4.2 結構比較 (Structural comparison) 6
1.4.3 操作機制 (Operating Modes) 6
第二章 實驗步驟與流程 18
2.1 元件製程 18
2.2 電性參數萃取 19
2.2.1 臨界電壓 (Threshold Voltage, VTH ) 19
2.2.2 次臨界擺幅 (Subthreshold Swing, S.S.) 20
2.2.3 開啟與關閉電流比值(On and Off-State Current Ratio) 20
第三章 結果與討論 27
3.1 多晶矽無接面電晶體之通道薄化 27
3.2 多晶矽無接面電晶體之不同通道厚度之電性分析 27
3.3 多晶矽無接面電晶體之碰撞游離效應 27
3.4 多晶矽無接面電晶體之短通道效應 28
第四章 結論與未來展望 48
參考文獻 49
參考文獻 References
[1] J. Bardeen and W.H. Brattain, "The transistor, a semiconductor triode," Physics Review, vol. 74, pp. 435, Jul. 1948. DOI: 10.1109/JPROC.1998.658753
[2] W. Shockley, "The theory of p-n junctions in semiconductors and p-n junction transistors," The Bell System Technical Journal, vol. 28, pp. 435-489, Jul. 1949. DOI: 10.1002/j.1538-7305.1949.tb03645.x
[3] Jack S. Kilby, "Miniaturized electronic circuits," US Patent 3,138,743, Filed Feb. 6, 1959. DOI: 10.1109/N-SSC.2007.4785580
[4] Robert N. Noyce, "Semiconductor device-and-lead structure," US Patent 2,981,877, Filed July 30, 1959. DOI: 0.1109/N-SSC.2007.4785577
[5] S. M. Sze, "VLSI Technology," second edition, McCraw-Hill Companies, 1996.
[6] G. Baccarani, B. Ricco, G. Spadini, "Transport properties of polycrystalline silicon films," J. Appl. Phys., vol. 49, pp. 5565-5570, Dec. 1978. DOI: 10.1063/1.324477
[7] Han Hao and Mingxiang Wang, "An analytical expression for drain saturation voltage of polycrystalline silicon thin-film transistors," IEEE Electron Device Lett., vol. 29, no. 4, pp. 357-359, Apr. 2008. DOI: 10.1109/LED.2008.917810
[8] Y.-H. Tai, S.-C. Huang, and P-T. Chen, "Degradation mechanism of poly-Si TFTs dynamically operated in OFF region," IEEE Electron Device Lett., vol. 30, no. 3, pp. 231-233, Mar. 2009. DOI: 10.1109/LED.2008.2010784
[9] F.-T. Chien and M.-C. Chang, "A new RSD poly-Si thin film transistor with inside spacer design," IEEE Trans. Electron Devices, vol. 57, no. 5, pp. 1173-1177, May. 2010. DOI: 0.1109/TED.2010.2043180
[10] S. Seki, O. Kogure, and B. Tsujiyama, "Laser-recrystallized polycrystalline-silicon thin-film transistors with low leakage current and high switching ratio," IEEE Electron Device Lett., vol. 8, no. 9, pp. 425-427, Sep. 1987. DOI: 10.1109/EDL.1987.26681
[11] T. Unagami and O. Kogure, "Large on/off current ratio and low leakage current poly-Si TFT’s with multichannel structure," IEEE Trans. Electron Devices, vol. 35, no. 11, pp. 1986-1989, Nov. 1988. DOI: 10.1109/16.7414
[12] S. Seki, O. Kogure, and B. Tsujiyama, "Effects of grain abstract-the relationship crystallization on trap state densities at boundaries in polycrystalline silicon," IEEE Electron Device Lett., vol. 8, no. 8, pp. 368-370, Aug. 1987. DOI: 10.1109/EDL.1987.26662
[13] T. Unagami and O. Kogure, "Evaluation of thermal annealing before and after formation of gate insulator films by extracting trap densities for SPC poly-Si TFTs," IEEE Electron Device Lett., vol. 34, no. 2, pp. 256-258, Feb. 2013. DOI: 10.1109/LED.2012.2230610
[14] B. F. Hung, K. C. Chiang, C. C. Huang, Albert Chin, and S. P. McAlister, "High-performance poly-silicon TFTs incorporating LaAlO3 as the gate dielectric," IEEE Electron Device Lett., vol. 26, no. 6, pp. 384-386, Jun. 2005. DOI: 10.1109/LED.2005.848622
[15] J. G. Fossum, A. Ortiz-Conde, H. Shichijo, and S. K. Banerjee, "Anomalous leakage current in LPCVD polysilicon MOSFETs," IEEE Trans. Electron Devices, vol. 32, no. 9, pp. 1878-1884, Sep. 1985. DOI: 10.1109/T-ED.1985.22212
[16] F.-T Chien and M.-C. Chang, "A new RSD poly-Si thin film transistor with inside spacer design," IEEE Trans. Electron Devices, vol. 57, no. 5, pp. 1173-1177, May. 2010. DOI: 10.1109/TED.2010.2043180
[17] C.-H. Shih, Y.-M. Chen, C.-H. Lien, "An analytical threshold voltage roll-off equation for MOSFET by using effective-doping model," Solid-State Electron., vol. 49, pp. 808-812, May. 2005. DOI: 10.1016/j.sse.2005.01.021
[18] M.-C. Wang, Z.-Y. Rao, H.-Y. Liu, F.-Y. Tuan, W.-S. Liao, and W.-H. Lan, "DIBL effect gauging the integrity of nano-node n-channel FinFETs," ISNE, pp. 1-2, May. 2017. DOI: 10.1109/ISNE.2017.7968704
[19] H. E. Ghitani, "DIBL coefficient in short-channel NMOS transistors," NRSC, no. 99, pp. 1-5, Feb. 1999. DOI: 10.1109/NRSC.1999.760932
[20] J. Zhu, R.A. Martin, J.Y. Chen, "Punchthrough current for submicrometer MOSFETs in CMOS VLSI," IEEE Trans. Electron Devices, vol. 35, no. 2, pp. 145-151, Feb. 1988. DOI: 10.1109/16.2433
[21] S.-Y. Kim, B.-H. Lee, Jae Hur, and J.-Y. Park, "A comparative study on hot-carrier injection in 5-Story vertically integrated inversion-mode and junctionless-mode gate-all-around MOSFETs," IEEE Electron Device Lett., vol. 39, no. 1, pp. 4-7, Jay. 2018. DOI: 10.1109/LED.2017.2772871
[22] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junctions," Nature Nanotechnol., vol. 5, no. 3, pp. 225-229, Feb. 2010. DOI: 10.1038/nnano.2010.15
[23] C.-H. Park, M.-D. Ko, K.-H. Kim, R.-H. Baek, C.-W. Sohn, C. K. Baek, S. Park, M.J. Deen, Y.-H. Jeong, and J.-S. Lee, "Electrical characteristics of 20-nm junctionless Si nanowire transistors," Solid-State Electron., vol. 73, pp. 7-10, Jul. 2012. DOI: 10.1016/j.sse.2011.11.032
[24] A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. D. Akhavan, P. Razavi, J.-P. Colinge, "Junctionless nanowire transistor (JNT): Properties and Design Guidelines," Solid-State Electron., vol. 65-66, pp. 33-37, Nov. 2011. DOI: 10.1109/ESSDERC.2010.5618216
[25] C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, "Junctionless multigate field-effect transistor," Appl. Phys. Lett., vol. 94, pp. 053511, Mar. 2009. DOI: 10.1063/1.3079411
[26] C.-W. Lee, I. Ferain ,A. Afzalian, R. Yan, N. D. Akhavan, I. Ferain, and J.-P. Colinge, "Performance estimation of junctionless multigate transistors," Solid-State Electron., vol. 54, pp. 97-103, Feb. 2010. DOI: 10.1016/j.sse.2009.12.003
[27] W. Cheng, A. Teramoto, R. Kuroda, M. Hirayama, and T. Ohmi, "High performance and highly reliable novel CMOS devices using accumulation mode multi-gate and fully depleted SOI MOSFETs," Microelectron. Eng. vol. 84, pp. 2105-2108, Sep. 2007. DOI: 10.1016/j.mee.2007.04.124
[28] Chris C.-C. Chung, C.-H. Shen, J.-Y. Lin, C.-C. Chin, and T.-S. Chao, "Vertically stacked cantilever n-type poly-Si junctionless nanowire transistor and its series resistance limit," IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 756-762, Feb. 2018. DOI: 10.1109/TED.2017.2780851
[29] H.-C. Lin, C.-I Lin, Z.-M. Lin, B.-S. Shie, and T.-Y. Huang, "Characteristics of planar junctionless poly-Si thin-film transistors with various channel thickness," IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1142-1148, Mar. 2013. DOI: 10.1109/TED.2013.2239647
[30] C.-W. Lee, A. N. Nazarov, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, R. T. Doria, and J.-P. Colinge, "Low subthreshold slope in junctionless multigate transistors," Appl. Phys. Lett., vol. 96, no. 10, pp. 102016, Feb. 2010. DOI: 10.1063/1.3358131
[31] M. Gupta and A. Kranti, "Variation of threshold voltage with temperature in impact ionization-induced steep switching Si and Ge junctionless MOSFETs," IEEE Trans. Electron Devices, vol. 64, no. 5, pp. 2061-2066, May. 2017. DOI: 10.1109/TED.2017.2679218
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.63.236
論文開放下載的時間是 校外不公開

Your IP address is 18.116.63.236
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code