Responsive image
博碩士論文 etd-0720105-113338 詳細資訊
Title page for etd-0720105-113338
論文名稱
Title
全像光柵的偏振與溫度效應在高分子與液晶材料的研究與應用
Temperature and Polarization Dependence on Holographic Gratings and Its Applications Based on Polymer and Liquid Crystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-13
繳交日期
Date of Submission
2005-07-20
關鍵字
Keywords
液晶、擴散、高分子、全像光柵、一階繞射訊號
diffusion, first-order diffraction, liquid crystals, holographic grating
統計
Statistics
本論文已被瀏覽 5776 次,被下載 3415
The thesis/dissertation has been browsed 5776 times, has been downloaded 3415 times.
中文摘要
本論文探討摻雜染料於液晶樣品(dye-doped liquid crystals;DDLC)及液晶與摻雜染料於高分子薄膜接觸之全像光柵一階繞射效率的研究及其形成的機制。藉由改變樣品溫度與寫入光及探測光之偏振來進行三個實驗。在實驗I中,探討DDLC樣品瞬態光柵的繞射效率隨時間的變化情形及其與溫度、寫入光及探測光偏振的關係。藉由對一階繞射效率到達峰值的時間及繞射效率衰減的研究,可以得到瞬態光柵中分子的重新定向的行為動態。藉由改變寫入光與探測光的偏振及樣品的溫度將有助於對雷射誘發瞬態光柵更進一步的了解。在實驗II中,利用偶氮染料DR1掺雜於水平配向的向列相液晶5CB中,探討溫度改變對於擴散效應的影響。實驗結果顯示擴散係數在分子導軸與光柵向量平行時較分子導軸與光柵向量垂直時大,且會隨著溫度的上升而變快。在實驗III中,探討全像光柵在液晶與摻雜染料於高分子薄膜接觸樣品的形成機制並研究其與溫度的倚變關係。由光致溫度變化引起光的散射也有所討論。探測光的穿透隨激發光作用後的行為有助於釐清一階繞射訊號凹陷(dip)的產生機制。原子力顯微鏡被應用來量測表面細紋光柵的深度,實驗結果顯示液晶與染料摻雜於高分子薄膜接觸樣品較染料摻雜於高分子薄膜樣品所形成之表面細紋光柵深且其一階繞射效率也較大。
Abstract
The study of the first-order diffraction efficiency and the mechanism of formation have been investigated on dye-doped liquid crystals (DDLC) and liquid crystals with azo-dye-doped polymer film. The thesis mainly contains three experimental parts by changing the temperature of sample and the polarizations of writing and probing beams. The first part includes the study of temporal profiles of diffraction efficiency for transient gratings and their temperature and polarization dependence in azo-dye-doped liquid crystals. The dynamics of molecular reorientation of transient gratings can be understood by analyzing the build-up time of the peak efficiency and the relaxation decay of the first-order diffraction.
The study of the polarization and temperature dependence allows us to understand the underlying mechanism of laser-induced transient gratings. The second part is concentrated in the diffusion process of photoexcited dye in a planar liquid crystal host. The experiment result reveals that the diffusion coefficient is larger for the molecular director along the grating vector than the perpendicular case and the diffusion will be faster as temperature increases. The third part is focused on the mechanism of formation and the temperature dependence of holographic grating for the liquid crystals with azo-dye-doped polymer film. The temporal profile of the first-order diffraction intensity shows a dip at the temperatures of nematic phase. The dip of the first-order diffraction intensity is temperature dependent and can be explained to be the light scattering due to the photothermal effect. The transient behavior in the dip of transmitted probe beam is also temperature dependent. The surface modulation has been measured by using atomic force microscope (AFM). The depth of surface relief grating of liquid crystals with azo-dye-doped polymer film is deeper than that of azo-dye-doped polymer film and the first-order diffraction efficiency is also larger for the liquid crystals with polymer film.
目次 Table of Contents
第一章 簡介
1-1 前言 1
1-2 液晶簡介 2
1-3 液晶的光電特性 10
1-4 Dye-Doped Liquid Crystals(DDLC)與Dye-doped
PMMA thin film 薄膜簡介 19
1-5 論文概要 23
第二章 相關理論
2-1 全像術與全像光柵 24
2-2光柵物理 31
2-3 Dye-Doped Liquid Crystals(DDLC)與Dye-doped
PMMA thin film 的非線性效應探討 37
2-4 全像光柵鬆弛現象與擴散效應 47
第三章 實驗準備
3-1 樣品的製備 52
3-2 實驗裝置 59
3-3 實驗步驟與過程 61

第四章 實驗結果與討論 63
4-1 瞬態光柵在掺雜偶氮染料於液晶樣品的溫度與偏振
之倚變關係(Temperature and polarization dependence
of transient gratings in azo-dye-doped liquid crystals) 64

4-2 全像光柵的鬆弛現象在受激發染料的擴散過程於水
平配相的液晶主體之研究 (Holographic Grating
Relaxation Studies of the Diffusion Process of
Photoexcited Dye in a Planar Liquid Crystal Host) 84

4-3 全像光柵的溫度倚變關係於液晶與摻雜染料於高分子
薄膜接觸樣品的研究 (Temperature Dependence of
Holographic Grating in Liquid crystal on Azo Dye-Doped
Polymer Films) 98

第五章 總結與未來展望
5-1 總結 114
5-2 未來展望 117

參考文獻 118

圖表索引
圖1-2.1:液晶物質之相轉變 3
圖1-2.2:長棒狀向列相液晶分子的排列結構 5
圖1-2.3:膽固醇相液晶分子在空間中呈現螺旋排列 7
圖1-2.4:近晶A相液晶分子的排列結構 8
圖1-2.5: 近晶C相中液晶分子成傾斜排列 8
圖1-2.6:近晶C*相液晶分子排列 9
圖1-3.1 折射率橢圓球 11 圖1-3.2 液晶於不同取向時,線偏振的入射光所感受到的折射率 12
圖1-3.3 液晶的旋光性 12-13
圖1-3.4:nematic液晶的三種可能形變 14
圖1-3.5 Fréedericksz transition
(a) 外加電場E相對於液晶分子旋轉角度θ作圖
(b) 液晶分子經外加電場影響,轉向平行電場方向 16

圖1-3.6:k15液晶在三種波長下的折射率對溫度關係圖 17
圖1-3.7:圖中的擬合線結果為 18
圖1-3.8:k15液晶在632.8nm光照射下之 對溫度關係圖 18
圖1-4.1:化學樣品系統示意圖 20
圖1-4.2:添加p型染料分子的向列相液晶薄膜在(a)無外加電場 (b)有外加電場(V>Vth)時的透光情形,(c)為上述兩情形之吸光度與波長關係圖 22
圖2-1.1:以干涉條紋來記錄物光波前 24
圖2-1.2:全像波前的重建 26
圖2-1.3:兩道相干性平面波相互干涉形成光柵之情形 28
圖2-1.4:兩道強度相等的雷射光相互干涉在空間中的強度分佈
曲線 30
圖2-2.l : (a)振幅光柵(amplitude grating) (b)相位光柵(phase grating) 31
圖2-2.2 : 體積光柵繞射原理 33
圖2-2.3 : 細薄積光柵繞射原理 34
圖2-2.4:Bragg繞射成立條件之示意圖 35
圖2-2.4:Bragg繞射成立條件之示意圖 36
圖2-3.1:同素異構化的能階躍遷示意圖 37
圖2-3.2:DR1分子順式與反式之結構 38
圖2-3.3:染料分子的光激發誘導力矩之Janossy model示意圖 42
圖2-3.4:液晶分子往光行進方向旋轉示意圖 43
圖2-3.5:液晶分子受偶氮染料分子的吸附錨定力矩而旋轉 44
圖2-3.6:光折變效應 46
圖2-4.1:雷射誘發空間折射率光柵與振幅光柵 48
圖3-1.1:k15液晶分子的結構式 53
圖3-1.2:k15液晶的吸收光譜圖 53
圖3-1.3:DR1分子的吸收光譜 54
圖3-1.4: PMMA分子的結構式 54
表[3-1.1]:樣品各材料間的重量百分比例 55
圖3-1.4:空cell的製作與材料填充流程圖 57
圖3-1.5: 偶氮染料-PMMA膜與液晶接觸示意圖 58
圖3-2.1:實驗裝置圖 60
圖4-1.1: 樣品的吸收光譜圖 67
圖4-1.2: 一階繞射訊號在溫度範圍為29.5℃至32℃隨時間的變
化情形,其寫入光的偏振為與液晶導軸垂直,探測光
的偏振為與液晶導軸平行。 69
圖4-1.3: 慢成份(slow component)的一階繞射效率峰值 (peak efficiency)對應於溫度的關係圖,包括四種寫入光與探
測光的偏振組合對應於液晶分子導軸的關係。 71
圖4-1.4: 簡單的model說明圖三在不同偏振的探測光所感受
到的 。其中(a)寫入光偏振垂直於導軸 (b)寫入光
偏振平行於導軸。 73
圖4-1.5: 到達繞射效率峰值所需要的時間(rise time)對應於溫
度之關係,包含了四種偏振組合的比較。 76
表[4-1.1]: 到達繞射效率峰值所需要的時間(rise time)對應於溫度
作圖,包含了四種偏振組合的比較,表內的數值其單位
為ms。 77
圖4-1.6: 繞射效率衰減的時間常數(decay time)對應於溫度的
作圖,包含了四種偏振組合的比較。 78
表[4-1.2]: 時間常數(decay time)對應於溫度的作圖,包含了四種
偏振組合的比較,表內的數值其單位為ms。 79
圖4-1.7: 繞射效率衰減的時間常數(decay time)在29.5℃的擬合圖 80
圖4-1.8: 繞射效率衰減的時間常數(decay time)在30.0℃的擬合圖 80
圖4-1.9: 繞射效率衰減的時間常數(decay time)在30.5℃的擬合圖 81
圖4-1.10: 繞射效率衰減的時間常數(decay time)在31.0℃的擬合圖81
圖4-1.11: 繞射效率衰減的時間常數(decay time)在31.0℃的擬合圖82
圖4-2.1: 實驗簡圖,其中黑色長形分子代表染料DR1,空心長形
分子代表液晶分子,此樣品為水平配相處理。 86
圖4-2.2: 一階繞射效率對應於時間隨溫度變化作圖,其中液晶導
軸平行於y軸(即第一部份的實驗(V, V, V))。 88
圖4-2.3: 一階繞射效率對應於時間隨溫度變化作圖,其中液晶導
軸平行於y軸(即第二部份的實驗(H, V, H))。 89
圖4-2.4: 對應於圖4-2.2一階繞射訊號衰減的擬合,其中實心圓
點為實驗數據,實線由方程式(4-2.1)擬合所得。 91
圖4-2.5: 對應於圖4-2.3一階繞射訊號衰減的擬合,其中實心圓
點為實驗數據,實線由方程式(4-2.1)擬合所得。 92
圖4-2.6: 對應於 作圖,i為∥ 或 ⊥。其中τ∥與τ⊥分
別表示由(H, V, H) 與(V, V, V)擬合所得的鬆弛時間。 94
圖4-2.7: 對應於圖4-2.6,分別將τ∥-1及 τ⊥-1對應於 隨溫
度變化作圖。 95
圖4-3.1: 寫入光與探測光光學系統架設簡圖及樣品的架構。 101
圖4-3.2: 一階繞射效率對應於時間的作圖,(a) (b) (c)分別代表寫
入光能量密度為1.5mJ/cm2、3.0mJ/cm2及4.5mJ/cm2。 103
圖4-3.3: 比較DR1-PMMA及DR1-PMMA/5CB樣品所量測到
的一階繞射效率對應於時間之情形。 104
圖4-3.4: 一階繞射效率訊號對應於時間在不同的溫度下作圖 107
圖4-3.5: 一道激發光及一道探測光,進行探測光受激發光作用於
樣品時之穿透度的瞬態行為研究。 109
圖4-3.6: 一階繞射效率的極大值對應於DR1-PMMA/5CB以及DR1-PMMA薄膜樣品在液晶態溫度範圍時的量測 111
圖4-3.7: 原子力顯微鏡(atomic force microscope)量測(a)DR1-PMMA 及(b)DR1-PMMA/5CB的表面情形。 112
參考文獻 References
1. A. Yabe, Y. Kawabata, H. Niino, M. Matsumoto, and A. Ouchi, Thin Solid Films 160 ,33(1988).
2. G. H. Heilmeier, J. A. Castellano, L. A. Zanoni, Proceedings of the International Liquid Crystal Conference, Vol. 2-2, p763, New York(1968).
3. T. V. Galstyan, B. Saad, M. M. Denariez-Roberge, J. Chem. Phys., 107, 22, p9319-9325(1997).
4. Photochemistry and Photophysics, H. Rau, edited by J. F. Rabek, vol 2, p119-141, Boca Raton(1990).
5. Masahiko HARA, Seiji ICHIKAWA, Hideo TAKEZOE, Atsuo FUKUDA, Jpn. J. Appl. Phys., 23, 11, p1420-1425(1984).
6. S. S. Gong, D. Christensen, J. Zhang, C. H. Wang, J. Phys. Chem., 91, 17(1987).
7. Wang C. H., Xia J. L., J. Phys. Chem., 96, p190(1992).
8. Xia J. L., Wang C. H., J. Phys. Chem., 92, p2603(1990).
9. Terazima M., Okamoto K., Hirota N., J. Phys. Chem., 97, p5188(1993).
10. Bacri J. C., Cebers A., Bourdon A., Demouchy G. Heegaard B. M., Perzynski R., Phys. Rev. Letter, 74, p5032(1995).
11. Heuberger G., Sillescu H. J., J. Phys. Chem., 100, p15255(1996).
12. Herbert H., Urbach W., Rondelez F., J. Chem. Phys., 68, p2725(1978).
13. Massahiko HARA, Hideo TAKEZOE, Atsuo FUKUDA, Jpn. J. Appl. Phys., 25, 12(1986).
14. B. Saad, M. M. Denariez-Roberge, T. V. Galstyan, Optics Letters, 23, 9(1998).
15. A. G. Chen, D. J. Brady, Optics Letters, 17, 6(1992).
16. T. V. Gastyan, V. Drnoyan, S. M. Arakelian, Phys. Lett. A, 217, 52(1996).
17. I. Janossy, L. Csillag, A. D. Lloyd, Phys. Rev. A, 44, 12(1991).
18. I. Janossy, A. D. Lloyd, B. S. Wherrett, Mol. Crys. & Liq. Cryst., 179(1990).
19. Lrenzo Marrucci, Mol. Crys. & Liq. Cryst., 321(1998).
20. T. Kosa, I. Janossy, Optics Letters, 20, 11(1995).
21. E. santamato, G. Abbate, P. Maddalena, L. Marruvvi, D. Papao, E. Maesera, Mol. Crys. &Liq. Cryst., 302(1997).
22. I. Janossy, T. Kosa, Optics Letter, 17, 17(1992).
23. I. C. Khoo, Hong Li, Yu Liang, IEEEE Journal of Quantum Electronics, 29, 5(1993).
24. I. C. Khoo, Hong Li, P.G. LoPresti, Yu Liang, Optics Letters, 31, p. 530, 1994.
25. T.Kosa, P. Palffy-Muhoray, H. Zhang, T. Ikeda, Mol. Crys. & Liq. Cryst., 421,107(2004).
26. S. Bauer, “Poled polymer for sensors and photonic applications”,J. Appl. Phys. 80,5331-5558(1996)
27. H.Tachibana and M. Matsumoto, “Functionalized Langmuir-Blodgett films-toward the construction of molecular devices”.Asv. Mater. 5, 796-814(1993)
28. C.Fiorini, F. Charra, J. Nunzi and P. Raimond, “Quasi-permanent all-optical encoding of noncentrosymmetry in azo-dye polymer”, J. Opt. Soc. Am. B. 14, 1984-2003(1997)
29. B. Volodin, K. Meerholz, Sandalphon, B. Kippelen and N. Peyghambarian, “Azo dye-doped photorefractive polymers”, Proc. SPIE-Int. Soc. Opt. Eng, 2144, 796-814(1994)
30. Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A.B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye doped polymers”, Opt. Lett. 19, 68-70(1994)
31.國立成功大學蔡明善博士論文
32. P. G. de Gennes and J.Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon Press, Oxford(1993).
33. Liquid Crystals, edited by S. Chandrasekhar, F. R. S. (Cambridge University Press, USA, 1992).
34. 國立成功大學何雅惠碩士論文
35. The Physics of Liquid Crystals, edited by P. G. de Gennes and J. Prost (Oxford University Press, New York, 1993)
36. B. Bahadur, Liquid Crystals-Applications and Uses, Vol.1, World Scientific, Singapore, 1990.
37. Iam-Choon Khoo, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena, John Wiley & Sons Press, New York(1995).
38. C. W. Oseen, Trans. Faraday Soc., 29, 83(1933).
39.國立成功大學呂昭良碩士論文
40.國立成功大學李佳榮碩士論文
41.國立成功大學范筠欣碩士論文
42. H. Zocher, Trans. Faraday Soc., 29, 19(1933).
43. F. C. Frank, Discuss. Faraday Soc., 25, 19(1958).
44. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer-Verlag, New York(1994).
45. P. Hariharan, Optical Holography-Principles, Technique and Applications, Cambridge University Press, Cambridge(1984).
46. Laser-Induced Dynamics Gratings, edited by H. J. Eicher, P. Gunter and D. W. Pohl, Springer-Verlag, Berlin(1986).
47. Laser and Holography, edited by P. C. Mehta and V. V. Rampal, World Scientific, Singapore(1993).
48. O. Werner, B. Fisher and A. Lewis, Opt. Lett., 17, 241(1992).
49. Nonlinear Optics, edited by R. W. Boyd (Academic Press, London, 1992).
50. H.J. Eichler , P. Günter and D. Pohl , Laser-Induced Dynamic Gratings , Springer , Heidelberg (1986).
51. Photochemistry and Photophysics, H. Rau, edited by J. F. Rabek, vol 2, p119-141, Boca Raton(1990).
52. F. Simoni and O. Francescangeli, Effects of Light on Molecular Orientation of Liquid Crystals, J. Phys. Condens. Matter 11, 439~487 (1999).
53. K. W. Rhee, J. Shibata, A. Barish, D. A. Gabriel, and C. S. Johnson, Jr., J. Phys. Chem. 88, 3944 (1984).
54. Andy Y. G. Fuh., C. C. Liao., C. Y. Tsai. and C. L. Lu, Fast Optical Recording in Dye-Doped Polymer-Dispersed Liquid Crystal Films, Optics Letters. 26, 447 (2001).
55. P. A. Kossyrev and G. P. Crawford, Formation Dynamics of Diffraction Grating in Reactive Liquid Crystals, Appl. Phys. Lett. 79, 3 (2001).
56. H. Hervet, W. Urbach and F. Rondelez, J. Chem. Phys. 68(6), 2725 (1978).
57. K. S. Pennington in Handbook of Laser, edited by R. J. Pressley (chemical Rubber, Cleveland, 1971).
58. H. Z. Cummins and H. L. Swinney, Prog. Opt. 8,133 (1970).
59. 54.I. C. Khoo; Liquid Crystals: Physical Properties and Nonlinear Opticial Phenomena (Wiley Interscience, New York, 1994).
60. F. Simoni and O. Francescangeli; J. Phys.: Condens. Matter 11 (1999) R439.
61. I. Janossy and T. Kosa; Opt. Lett. 17 (1992) 1183.
62. W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin; Nature (London) 351 (1991) 49.
63. A. G. Chen and D. J. Brady; Opt. Lett. 17 (1992) 1231.
64. O. Francescangeli, S. Slussarenko, F. Simoni, D. Andrienko, V. Reshetnyak and Y. Reznikov; Phys. Rev. Lett. 82 (1999) 1855.
65. B. Saad, T. V. Galstyan, M. M. Denariez-Roberge, M. Dumont; Opt. Commun. 151 (1998)235.
66. D. Voloschenko and O. D. Lavrentovich; J. Appl. Phys. 86 (1999) 4843.
67. D. Voloschenko, A. Khykhnyak, Y. Reznikov and V. Reshetnyak; Jpn. J. Appl. Phys. 34 (1995) 566.
68. I. C. Khoo, S. Slussarenko, B. D. Guenther, M.-Y. Shih, P. Chen and W. V. Wood; Opt. Lett. 23 (1998) 253.
69. A. G. Chen and D. J. Brady; Opt. Lett. 17 (1992) 441.
70. T. Lodge and B. Chapman: Trends Polym. 5 (1997) 122.
71. G. Heuberger and H. Sillescu: J. Phys. Chem. 100 (1996)15255 .
72. J. M. Zielinski, G. Heuberger, H. Sillescu, U. Wiesner, A. Heuer, Y. Zhang and H. W. Spiess: Macromolecules 28 (1995) 8287.
73. D. Ehlich and H. Sillescu: Macromolecules 23(1990) 1600.
74. T. Moriyama, Y. Takanishi, K. Ishikawa, H. Takezoe and A. Fukuda: Liquid Crystals 18 (1995) 639.
75. C. C. Bowley and G. P. Crawford: Appl. Phys. Lett. 76 (2000) 2235.
76. P. A. Kossyrev and G. P. Crawford: Appl. Phys. Lett. 79 (2001) 296.
77. B. Saad, M. M. Denariez-Roberge and T. V. Galstyan: Opt. Lett. 23 (1998) 727.
78. B. Saad, M. M. Denariez-Roberge and T. V. Galstyan: Opt. Lett. 23 (1998) 1942.
79. Andy Y.-G. Fuh, Chia-Yu Lu, Ting-Shan Moand Ming-Shann Tsai: Jpn. J. Appl. Phys. 42 (2003) 7344.
80. I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. LoPresti: J. Appl. Phys. 69 (1991) 3853.
81. M. Schadt, K. Schmit, V. Hozinkov, and V. Chifrinnov, Jpn. J. Appl. Phys. 311 (1992) 2155.
82. W. Gibbons, P. Shannon, S. Sun, and B. Sweltin, Nature 351 (1991)
83. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, Langmuir 4 (1988) 1214.
84. P. Rochon, E. Batalla, and A. Natansohn, Appl. Phys. Lett. 66 (1995) 136.
85. D. W. Berreman, Mol. Cryst. Liq. Cryst. 23 (1973) 215.
86. V. K. Gupta and N. L. Abbot, Science 276 (1997) 1533 .
87. G. P. Bryan-Brown, C. V. Brown, I. C. Sage, and V. C. Hui, Nature (London) 392 (1998) 365.
88. X. T. Li, A. Natansohn, and P. Rochon, Appl. Phys. Lett. 74 (1999) 3791.
89. H. Ono and N. Kawatsuki, Jpn. J. Appl. Phys., Part 1 36 (1997) 761.
90. H. Ono and N. Kawatsuki, Jpn. J. Appl. Phys., Part 2 36 (1997) L353.
91. I. C. Khoo, R. R. Michael, and G. M. Finn, Appl. Phys. Lett. 52 (1988) 2108.
92. I. C. Khoo, R. Y. Yan, G. M. Finn, T. H. Liu, and R. R. Michael, J. Opt. Soc. Am. B 5 (1988) 202.
93. A. Leopold, J. Wolff, O. Baldus, and M. R. Huber, J. Chem. Phys. 113 (2000) 833.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code