Responsive image
博碩士論文 etd-0720106-010713 詳細資訊
Title page for etd-0720106-010713
論文名稱
Title
低溫複晶矽薄膜電晶體之電性分析與物理機制研究
Investigation on Electrical Analysis and Physics Mechanism of Low Temperature Polycrystalline-silicon Thin Film Transistor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-06
繳交日期
Date of Submission
2006-07-20
關鍵字
Keywords
準分子雷射結晶、橫向連續結晶、熱滯留輔助結晶
HREC TFT, stress, SLS TFT, bending, poly-Si, back light, photon current, ELA TFT
統計
Statistics
本論文已被瀏覽 5743 次,被下載 2344
The thesis/dissertation has been browsed 5743 times, has been downloaded 2344 times.
中文摘要
我們利用準分子雷射結晶、橫向連續結晶與熱滯留輔助結晶的方式
製造薄膜電晶體。在交流電壓與熱載子的可靠度分析下,以熱滯留輔助結晶方式製造薄膜電晶體有比較好的可靠度。在趨饒方面,以橫向連續結晶方式製造的薄膜電晶體比準分子雷射結晶方式製造的薄膜電晶體有更明顯的變化,這提供我們在製造可趨饒的液晶顯示器的一個好的選擇。在光電流方面,如果在通道中有大的晶界,光電流就會有明顯的下降。不論在製程或是量測的參數下,以熱滯留輔助結晶的方式製造薄膜電晶體都有比較好的表現;但是,他也是有缺點必須去克服—我們必需多成長一層熱滯留層,也必須蝕刻掉它、複晶矽與熱滯留層的蝕刻比…等等。
Abstract
There were three poly-Si TFT made by ELA, SLS, and HREC. The HREC TFT had better reliability than ELA TFT and SLS TFT under AC and hot carrier stress. And the effect of bending in SLS TFT was more obvious then ELA TFT, it provide us a better choose to develop a flexible TFT LCD.
In poly-Si TFT, the photon current would decrease if there was a grain boundary in the channel. In all parameters include both manufacture and measurement the HREC TFT had better behaviors than ELA TFT and SLS TFT. But there also some shortcomings we must overcome include we muse
growth a heat-retaining layer extra and must etch it and the poly-Si/heat-retaining etch rate and so on.
目次 Table of Contents
Chinese Abstract I
English Abstract II
Contents III
Figure Caption V
Table Caption IX
Chapter 1 – Introduction 1
1.1 Overview 1
1.2 Technology of polycrystalline-silicon thin-film transistor 3
1.3 Defects in polycrystalline-silicon film 4
1.4 Seto,s model 5
Chapter 2 - Technology of crystallization 9
2.1 Excimer laser crystallization(ELC) 9
2.2 Sequential lateral solidification crystallization(SLS) 10
2.3 Heat-retaining enhanced crystallization(H-REC) 15
Chapter 3 - Fabrication and electrical characterization 17
3.1 Device fabrication 17
3.1.1 Fabrication of Excimer laser crystallization(ELC)
TFT 17
3.1.2 Fabrication of Sequential lateral solidification
crystallization(SLS) TFT 17
3.1.3 Fabrication of Heat-retaining enhanced
crystallization(H-REC) TFT 18
3.2 Basic characterization of the LTPS TFT 19
3.2.1 Transfer characteristics 19
3.2.2 Output characteristics 21
3.3 Method of device parameter extraction 22
3.3.1 Determination of the threshold voltage 23
3.3.2 Determination of the field-effect mobility 25
3.3.3 Determination of on/off current ratio 26
3.3.4 Determination of the subthreshold swing 26
3.3.5 Determination of the trap density 27
3.3.6 Determination of the channel resistance and the
parasitic resistance 28
Chapter 4 - Results and Discussions 30
4.1 The Influence of AC stress 30
4.1.1 Capacitance measurement with variable frequency
---determination of the energy of trap 31
4.1.2 Saturation operation
---determination of the position of trap 32
4.1.3 The temperature effect 33
4.2 The Influence of DC stress 34
4.3 The Influence of Bending 34
4.4 The Influence of Back Light 35
4.4.1 The phenomenon of photon current 35
4.4.2 The photon current of SLS TFT with
grain boundary 36
Chapter 5 - Conclusion 37
References 38
Figures 46
Table 70
參考文獻 References
Chapter 1
[1.1]. H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157 (1989)
[1.2]. M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays ,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001
[1.3]. H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992
[1.4]. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and
T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
[1.5]. K. Yoshizaki, H. Takaashi, Y. Kamigaki, T.asui, K. Komori, and H. Katto, ISSCC Digest of Tech., p.166, 1985
[1.6]. N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, pp. 1930-1936, 1996.
[1.7]. T. Kaneko, U. Hosokawa, N. Tadauchi, Y. Kita, and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT's analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, Vol. 38, pp. 1086-1093, 1991
[1.8]. U. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, Proc. of IEEE Solid-State Circuits Conference (ISSCC), p. 266 , 1998.
[1.9]. N.Yamauchi, U. Inava, and M. Okamura, “An integrated photodetector- amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett, Vol. 5, pp. 319-321, 1993.
[1.10]. M. G. Clark, IEE Proc. Circuits Devices Syst, Vol. 141, 133 (1994)
[1.11]. Noriyoshi Yamauchi, Jean-Jacques J. Hajjar and Rafael Reif, “Polysilicon Thin-Film Transistors with Channel Length and Width Comparable to or Smaller than the Grain Size of the Thin Film,” IEEE Trans. Electron Devices, Vol. 38, pp 55-60, 1991
[1.12]. Singh Jagar, Mansun Chan, M. C. Poon, Hongmei Wang, Ming Qin, Ping K. Ko, Yangyuan Wang, “Single Grain Thin-Film-Transistor (TFT) with SOI CMOS Performance Formed by Metal-Induced-Lateral-Crystallization,” IEDM Tech. Dig., pp. 293-296, 1999.
[1.13]. K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, Vol. 69, pp. 1703-1706, 1991.
[1.14]. T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett, Vol. 13, pp. 309-311, 1992.
[1.15]. H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech. Dig, Vol. 91, p. 563 (1991)
[1.16]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[1.17]. P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato, “Anomalous off-current mechanisms in n-channel poly-Si thin film transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[1.18]. M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp. 385-387, 1993
[1.19]. N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, Vol. 41, pp. 1876-1879, 1994.
[1.20]. Kwon-Young Choi and Min-Koo Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device Lett., Vol. 17, pp. 566-568, 1996.
[1.21]. N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, No. 11, pp. 1930-1936, 1996.
[1.22]. R. K. Watts and J. T. C. Lee, “Tenth-Micron Polysilicon Thin-film Transistors,” IEEE Electron Device Lett., Vol. 14, pp. 515-517, 1993.
[1.23]. “Polycrystalline silicon for integrated circuits and displays”, second edition, written by Ted Kamins, pp.200-210.




Chapter 2
[2.1]. M. Fiebig, U. Stamm, P. Oesterlin, N. Kobayashi, and B. Fechner. “I-J and 300-W excimer laser with exceptional pulse stability for poly-Si crystallization.” SPIE Proceedings, vol. 4295, p. 38 (2001).
[2.2]. C. Prat, D. Zahorski, Y. Helen, T. M. Brahim, and O. Bonnaud. “Excimer laser annealing system for AMLCDs: a long laser pulse for high performance, uniform and stable TFT.” SPIE Proceedings, vol. 4295, p. 33(2001).
[2.3]. N. Ibaraki: SID ’99 Dig., 1999, p. 172.
[2.4]. T. Nishibe: Eurodisplay, 2002, p. 269.
[2.5]. S. D. Brotherton, D. J. McCulloch, J. B. Clegg and J. P. Gowers: IEEE Trans. Electron Devices 40 (1993) 407.
[2.6]. M. Hatano and T. Sjiba: SID’02 Dig., 2002, p. 158.
[2.7]. F. Takeuch, M. Takei, K. Hotta, K. Yoshino, K. Suga, A. Hara and N. Sasaki: AM-LCD’01, 2001, p. 251.
[2.8]. K. Yamazaki, T. Kudo, K. Seike, D. Ichishima and C. Jin: AMLCD’ 02, 2002, p. 149.
[2.9]. A. Hara, F. Takeuchi, M. Takei, K. Suga, M. Chida, Y. Sano and N. Sasaki: AMLCD’02, 2002, p. 227.
[2.10]. R. S. Sposili and J. S. Im: Appl. Phys. Lett. 69 (1996) 2864.
[2.11]. J. S. Im and R. S. Sposili: MRS Bulletin 21 (1996) 39.
[2.12]. J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. J. Song, H. S. Cho: Phys. Status Solidi 166 (1998) 603.
[2.13]. J. Y. Park, H. H. Park, K. Y. Lee, H. D. Kim, H. K. Chung: AMLCD03, 2003, p. 149.
[2.14]. M. A. Crowder, P. G. Carey, P. M. Smith, R. S. Sposili, H. S. Cho, J. S. Im: IEEE Electron Device Lett. 19 (1998) 306.
[2.15]. Y. H. Jung, J. M. Yoon, M. S. Yang, W. K. Park, H. S. Soh: MRS Symp. Proc. 621, 2000, Q9.14.1.
[2.16]. S. D. Brotherton, M. A. Crowder, A. B. Limanov, B. Turk and J. S. Im: Asia Display/IDW’01, 2001, p. 387.
[2.17]. J. Y. W. Seto: J. Appl. Phys. 46 (1975) 5247.
[2.18]. T. I. Kamins: Polycrystalline Silicon for Integrated Circuit Applications (Kluwer Academic, Boston, 1988).
[2.19]. H. Takaoka, Y. Sato, T. Suzuki, T. Sasaki, H. Tanabe, H. Hayama: Asia Display/IDW ’01, 2001, p. 395.
[2.20]. J. S. Im and H. J. Kim: Appl. Phys. Lett. 64 (1994) 2303.
[2.21]. H. J. Kim and J. S. Im: Appl. Phys. Lett. 68 (1996) 1513.
[2.22]. J. S. Im and H. J. Kim: Appl. Phys. Lett. 63 (1993) 1969
[2.23]. P. S. Peercy, M. O. Thompson and J. Y. Tsao: MRS Symp. Proc. 80, 1987, p. 39.
[2.24]. M. O. Thompson, G. J. Calvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. G. Cullis and N. G. Chew: Phys. Rev. Lett. 52 (1984) 2360.
[2.25]. R.S. Sposili and J.S. Im ,Appl.Phys.Lett, 69(1996)p2824.
[2.26]. CH. Oh, M. Ozawa, and M. Matsumura, Jpn. J. Appl. Phys .37(1998) L492.
[2.27]. P. C. Van der Wilt, B .D. van Dijk, G. J. Bertens, R. Ishihara and C.I.M. Beenakker: Appl. Phys. Lett. 7212(2001)1819.
[2.28]. M.K. Han and I.H. Song, 2003 International Workshop on AMLCD, (2003)75.


Chapter 3
[3.1]. H. Chern, C. Lee, and T. Lei, “Correlation of polysilicon thin film
transistor characteristics to defect states via thermal annealing,” IEEE
Trans. Electron Devices, vol. 41, p. 460, 1994.
[3.2]. N. Lifshitz and S. Luryi, “Enhanced channel mobility in polysilicon
thin film transistors,” IEEE Electron Device Lett., vol. 15, p. 274,
1994.
[3.3]. A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia,"Electrical properties of amorphous silicon transistors and MIS-devices: comparative study of top nitride and bottom nitride configurations", J. Electrochem. Soc., vol. 140, pp. 3679-83, 1993.
[3.4]. S. C. Deane and M. J. Powell,"Field-effect conductance in amorphous silicon thin-film transistors with a defect pool density of states", J. Appl. Phys., vol. 74, pp. 6655-66, 1993.
[3.5]. W. Ling, T. A. Fjeldly, B. Iniguez, H. C. Slade, and M. Shur,"Self-heating and kink effects in a-Si:H thin film transistors", IEEE Trans. Electron Devices, vol. 47, pp. 387-97, 2000.
[3.6]. M. Fuse, Y. Sakata, T. Inoue, K. Yamauchi, and Y. Yatsuda,"Kink effect in the double-gate accumulation-mode N-channel polysilicon thin-film transistors", Polycrystalline Semiconductors, Grain Boundaries and Interfaces. Proceedings of the International Symposium. Springer Verlag, Berlin, West Germany, 1989.
[3.7]. G. A. Armstrong, S. D. Brotherton, and J. R. Ayres,"A comparison of the kink effect in polysilicon thin film transistors and silicon on insulator transistors", Solid-St. Electron., vol. 39, pp. 1337-46, 1996.
[3.8]. I. Policicchio, A. Pecora, R. Carluccio, L. Mariucci, G. Fortunato, F. Plais, and D. Pribat,"Determination of excess current due to impact ionization in polycrystalline silicon thin-film transistors", Solid-St. Electron., vol. 42, pp. 613-18, 1998.
[3.9]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[3.10]. R. E. Proano, R. S. Misage, D. G. Ast, ”Development and Electrical Properties of Undoped Polycrystalline Silicon Thin-Film Transistors.” , IEEE Electron Device Lett. Vol. 36. No. 9. pp. 1915-1922, Sept. 1989.

Chapter 4
[4.1]. N. Kato, T. Yamada, S. Yamada, T. Nakamura, and T. Hamano, IEDM Tech. Dig , 677(1992).
[4.2]. N. Kato, T. Yamada, S. Yamada, T. Nakamura, and T. Hamano, IEDM Tech. Dig , 677(1992).
[4.3]. Mark D. Jacunski, Michael S. Shur, Michael Hack, "Threshold voltage, field effect mobility, and gate-to-channel capacitance in polysilicon TFT’s", IEEE Trans. Electron Devices, vol. 43, NO 9 , 1996
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code