Responsive image
博碩士論文 etd-0720106-102159 詳細資訊
Title page for etd-0720106-102159
論文名稱
Title
微型燃料電池組新型雙極板設計/製作及測試
A Novel Design/Fabrication for Micro Fuel Cell Stack Bipolar Plates and Performance Tests
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-29
繳交日期
Date of Submission
2006-07-20
關鍵字
Keywords
微電鑄、性能曲線、電池組、雙極板
VI curve, Bipolar plate, Stack, Micro-electroforming
統計
Statistics
本論文已被瀏覽 5694 次,被下載 3528
The thesis/dissertation has been browsed 5694 times, has been downloaded 3528 times.
中文摘要
本實驗設計與製作之微型H2/air質子交換膜燃料電池組是以微機電技術(MEMS technology)與微電鑄製程(micro-electroforming manufacturing processes)結合,先使用SU-8厚膜負光阻為材料在基材上完成相反之流道結構,再進行微電鑄得到金屬雙極板的創新設計。實驗選用一般燃料電池組雙極板常用之蛇型狀結構來探討在不同操作溫度(25oC, 35oC與50oC)、陽極背壓(97kPa, 153kPa與207kPa)與陽極加溼溫度(25oC, 35 oC 與50 oC)下之性能變化,並將實驗量測結果以VI曲線、PI曲線來表示。當完成性能曲線(VI與PI曲線)後,發現增加電池操作溫度、陽極進氣壓力與陽極溼度會對燃料電池組發電效率與電流密度有很大的影響,因此可藉由本實驗所量測出來的數據探討在各種不同操作條件下燃料電池組之性能。
Abstract
The H2/air micro PEMFC stacks were designed and fabricated in-house through MEMS (Micro-Electro-Mechanical System) technology with deep UV lithography manufacturing processes (SU-8 photoresist) and micro electroforming manufacturing processes to construct a novel metallic bipolar plate. The effect of different operating parameters on micro PEMFC stacks performance was experimentally investigated for serpentine flow-field configuration. Experiments were conducted through a serious laboratory experiments with different operating conditions of temperature (25oC, 35 oC and 50 oC), anode backpressures (97kPa, 153kPa, 207kPa) as well as anode humidifier temperature (25oC, 35 oC and 50 oC). Experimental results are presented in the form of polarization VI curves and PI curves under above operating conditions. The influence of the aforementioned parameters was presented and discussed.
目次 Table of Contents
目錄 頁次

目錄......................................................i
表目錄...................................................iv
圖目錄....................................................v
符號說明...............................................viii
中文摘要..................................................x
英文摘要.................................................xi

第一章 序論...............................................1
1-1 前言................................................1
1-2 燃料電池發展之歷史與簡介............................3
1-3 燃料電池發電原理....................................4
1-4 燃料電池種類........................................5
1-5 研究目的............................................9
1-6 文獻回顧...........................................10

第二章 微型質子交換膜燃料電池組元件設計與製作............16
2-1 質子交換膜燃料電池組成元件.........................16
2-2 燃料電池組設計要點.................................22
2-3 微型質子交換膜燃料電池組元件設計與製作............24
2-3-1使用製程原理簡介.................................24
2-3-2實驗用雙極板製作參數.............................28
2-4 微型燃料電池組組裝方式............................33

第三章 理論分析..........................................48
3-1 前言...............................................48
3-2 電極熱力學.........................................48
3-2-1 自由能與理想電位...............................49
3-2-2 理想電位與溫度之關係...........................51
3-2-3 理想電位與壓力之關係...........................53
3-3 極化現象...........................................55
3-4 極化曲線...........................................57

第四章 實驗設備與元件材料................................61
4-1 實驗設備...........................................61
4-2 元件材料...........................................66

第五章 誤差分析..........................................76

第六章 實驗結果與討論....................................80
6-1 電池操作溫度對燃料電池性能的影響...................80
6-2 陽極進氣壓力對燃料電池性能的影響...................82
6-3 陽極加濕對燃料電池性能的影響.......................83

第七章 結論與未來展望...................................96
7-1 結論...............................................96
7-2 未來與展望.........................................98

參考文獻.................................................99

附錄A...................................................105


表目錄 頁次

表 1-1 六種燃料電池特性以及材料之比較.....................1
表 2-1 幾種常用之質子交換膜物理特性之比較................34
表 2-2 在300K時雙極板材料物理性質表......................35
表 2-3 製程參數與雙極板幾何尺寸..........................36
表 3-1 氫氧燃料電池反應之自由能改變量與理想電位..........59
表 4-1 雙極板與質子交換膜結構材料規格....................68
表 5-1 誤差分析表........................................79


圖目錄 頁次

圖1-1 本實驗設計之微型燃料電池組結構圖...................15
圖2-1 傳統燃料電池組解構圖...............................37
圖2-2 觸媒降低燃料電池電化學反應活化能之圖形.............38
圖2-3 雙極板製作步驟.....................................39
圖2-4 SU-8塗佈與烘烤曲線圖..............................40
圖2-5 SU-8母模結構在不同水浴溫度與40%超音波震盪下之脫模速率圖.....................................................41
圖2-6 SU-8母模結構影像圖................................42
圖2-7 SU-8母模結構表面粗糙度分析圖......................43
圖2-8 電鑄銅雙極板影像圖.................................44
圖2-9 電鑄銅雙極板SEM影像圖..............................45
圖2-10 電鑄銅雙極板表面粗糙度分析圖......................46
圖2-11 燃料電池組串聯常用的堆疊方法......................47
圖3-1 燃料電池極化曲線圖.................................60
圖4-1 抽氣櫃.............................................69
圖4-2 旋轉塗佈機.........................................69
圖4-3 加熱烤板...........................................70
圖4-4 單面對準曝光機.....................................70
圖4-5 超音波震盪器.......................................71
圖4-6 工具顯微鏡.........................................71
圖4-7 電鑄槽.............................................72
圖4-8 表面輪廓儀(α-step).................................72
圖4-9 原子動力顯微鏡(AFM)................................73
圖4-10 掃描式電子顯微鏡(SEM).............................73
圖4-11 紫外光接合系統....................................74
圖4-12 氣體環路..........................................74
圖4-13 恆電位儀..........................................75
圖6-1系統所需環路配置圖..................................87
圖6-2 2顆與7顆電池組在固定陽極壓力P=97kPa下,不同電池操作溫度對性能的影響...........................................89
圖6-3 2顆與7顆電池組在固定電池操作溫度Tstack=25oC下,不同陽極壓力對性能的影響.......................................90
圖6-4 2顆與7顆電池組在固定加濕溫度Thum=25oC與陽極壓力P=97kPa下,不同電池操作溫度對性能的影響..................91
圖6-5 2顆與7顆電池組在不同電池操作溫度與電池電壓下對電流密度的影響.................................................92
圖6-6 2顆與7顆電池組在固定加濕溫度Thum=25oC、陽極壓力P=97 kPa與不同電流密度下,電池操作溫度、電池電壓與相對溼度關係圖.......................................................93
圖6-7 2顆與7顆電池組在固定電池操作溫度Tstack=35oC與陽極壓力P=97 kPa下,不同加濕溫度對性能的影響.....................94
圖6-8 2顆與7顆電池組在不同加濕溫度與電池電壓下對電流密度的影響.....................................................95
參考文獻 References
1. D. Chu, and R. Jiang, “Performance of polymer electrolyte membrane fuel cell stacks Part I.: Evaluation and simulation of an air breathing PEMFC stack,” Journal of Power Sources, Vol.83, 1999, pp.128-133.

2. W. K. Lee, J. W. Vanzee, S. Shimpalee, and S. Dutta, “Effect of humidity on PEM fuel cell performance Part I.: Experiments,” Heat Transfer Division, Vol.364-1, 1999, pp.359-366.

3. R. Jiang, and D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cell,” Journal of Power Sources, Vol.93, 2001, pp.25-31.

4. J. J. Hwang, and H. S. Hwang, “Parametric studies of a double-cell stacl of PEMFC using Grafoil flow-field plates,” Journal of Power Sources, Vol.104, 2002, pp.24-32.

5. S. Slade, S. A. Campbell, T. R. Ralph, and F. C. Walsh, “Ionic conductivity of an extruded Nafion 117 EW series of membranes,” Journal of The Electrochemical Society, Vol.149, 2002, pp.1556-1564.

6. J. P. Meyers, and H. L. Maynard, “Design considerations for miniaturized PEM fuel cells,” Journal of Power Sources, Vol.109, 2002, pp.76-88.

7. S. S. Hsieh, J. K. Kuo, C. F. Hwang, and H. H. Tsai, “A novel design and microfabrication for a micro PEMFC,” Microsystem Technologies, Vol.10, 2004, pp.121-126.

8. S. J. Lee, C. H. Huang, J. J. Lai, and Y. P. Chen, “Corrosion-resistant component for PEM fuel cells,” Journal of Power Sources, Vol.131, 2004, pp.162-168.

9. S. S. Hsieh, C. F. Huang, J. K. Kuo, H. H. Tsai, and S. H. Yang, “SU-8 flow field plates for a micro PEMFC,” Journal of Solid State Electrochem, Vol. 9, 2005, pp.121-131.
10.S. S. Hsieh , S. H. Yang, J. K. Kuo, C. F. Huang, and H. H. Tsai, “Study of operational parameters on the performance of micro PEMFCs with different flow fields,” Energy Conversion and Management, Vol. 47, 2006, pp.1868-1878.

11.M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Scum-free patterning of SU-8 resist for electroforming applications,” Journal of Micromechanics and Microengineering, Vol.15, 2005, pp.130-135.

12.F. Barbir, H. Gorgun, and X. Wang, “Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells,” Journal of Power Sources, Vol.141, 2005, pp.96-101.

13.S. T. Kline, and F. A. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, 1953, pp. 3-8.

14.R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” Journal of Fluids Engineering, Vol. 104, 1982, pp. 250-260.

15.V. A. Paganin, E. A. Ticianelli, and E. R. Gonzalez, “Development of small polrmer electrolyte fuel cell stacks,” Journal of Power Sources, Vol. 70, 1998, pp.55-58.

16.A. Cisar, O. J. Murphy, and A. Cisar, “Low-cost light weight high power density PEM fuel cell stack,” Electrochimica Acta, Vol. 43, 1998, pp.3829-3840.

17.K. H. Choi, D. J. Park, Y. W. Rho, Y. T. Kho, and T. H. Lee, “A study of internal humidification of an integrated PEMFC stack,” Journal of Power Sources, Vol. 74, 1998, pp.146-150.

18.D. Chu, and R. Jiang , “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of Power Sources, Vol. 80, 1999, pp.226-234.

19.E. Antolini, L. Giorgi, A. Pozio, and E. Passalacua, “Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEMFC,” Journal of Power Sources, Vol. 77, 1999, pp.136-142.

20.K. S. Dhathathreyan, P. Sridhar, G. Sasikumar, K. K. Ghosh, G. Velayutham, N. Rajalakshmi, M. Raja, and K. Ramya, “Development of polyelectrolyte membrane fuel cell stack,” International Journal of Hydrogen Energy, Vol. 24, 1999, pp.1107-1115.

21.D. Chu, R. Jiang, and C. Walker, “Analysis of PEM fuel cell stacks using an empirical current-voltage equation,” Journal of Applied electrochemistry, Vol. 30, 2000, pp.365-370.

22.J. Hamelin, K. Agbossou, A. Laperrière, F. Laurencelle, and T. K. Bose, “Dynamic behavior of a PEM fuel cell stack for stationary application,” International Journal of Hydrogen Energy, Vol. 26, 2001, pp.625-629.

23.J. M. Song, S. Y. Cha, and W. M. Lee, “Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method,” Journal of Power Sources, Vol. 94, 2001, pp.78-84.

24.S. L. Lee, A. C. Chien, S. W. Cha, R. O’Hayre, Y. I. Park, Y. Saito, and F. B. Prinz, “Design and fabrication of a micro fuel cell array with flip-flop interconnection,” Journal of Power Sources, Vol. 112, 2002, pp.410-418.

25.S. Gamburzev, and A. J. Appleby, “Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC),” Journal of Power Sources, Vol. 107, 2002, pp.5-12.

26.S. Slade, S. A. Campbell, T. R. Ralph, and F. C. Walsh, “Ionic conductivity of an extruded Nafion 1100 EW series of membranes,” Journal of The Electrochemical Society, Vol. 149, 2002, pp.A1556-A1564.

27.R. O’Hayre ,T. Fabian, S. J. Lee, and F. B. Prinz, “Lateral ionic conduction in planar array fuel cells,” Journal of The Electrochemical Society, Vol. 150, 2003, pp.A430-A438.

28.M. Müller, C. Müller, F. Gromball, M. Wölfle, and W. Menz, “Micro-structure flow fields for small fuel cells,” Microsystem Technologies, Vol. 9, 2003, pp.159-162.

29.T. V. Nguyen, M. W. Knobbe, W. He, and P. Y. Chong, “Active gas management for PEM fuel cell stacks,” Journal of Power Sources, Vol. 138, 2004, pp.94-100.

30.S. Giddey, F. T. Ciacchi, and S. P. S. Badwal, “Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kW capacity,” Journal of Power Sources, Vol. 125, 2004, pp.155-165.

31.I. Mohamed, and N. Jenkins, “Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms,” Journal of Power Sources, Vol. 131, 2004, pp.142-146.

32.S. W. Cha, R. O’Hayre, S. J. Lee, Y. Saito, and F. B. Prinz, “Geometric scale effect of flow channels on performance of fuel cells,” Journal of The Electrochemical Society, Vol. 151, 2004, pp.A1856-A1864.

33.M. V. Williams, H. R. Kunz, and J. M. Fenton, “Operation of Nafion-based PEM fuel cells with no external humidification: influence of operation conditions and gas diffusion layers,” Journal of Power Sources, Vol. 135, 2004, pp.122-134.

34.S. Litster, and G. Mclean, “Review PEM fuel cell electrodes,” Journal of Power Sources, Vol. 130, 2004, pp.61-76.

35.S. Y. Ahn, Y. C. Lee, H. Y. Ha, S. A. Hong, and I. H. Oh, “Effect of the ionomers in the electrode on the performance of PEMFC under non-humidifying condition,” Electrochimica Acta, Vol. 50, 2004, pp.673-676.
36.R. O’Hayre, and F. B. Prinz, “The air/platinum/Nafion triple-phase boundary:characteristics, scaling, and implications for fuel cells,” Journal of The Electrochemical Society, Vol. 151, 2004, pp.A756-A762.

37.W. R. W. Daud, A. B. Mohamad, A. A. H. Kadhum, R. Chebbi, and S. E. Iyuke, “Performance optimization of PEM fuel cell during MEA fabrication,” Energy Conversion and Management, Vol. 45, 2004, pp.3239-3249.

38.S. V. P. Barreira, V. G. Morales, C. M. Pereira, J. A. Manzanares, and F. Silva, “Electrochemical impedance spectroscopy of polyelectrolyte multilayer modified electrodes,” J. Phys. Chem. B, 2004, pp.17973-17982.

39.R. Hahn, S. Wagner, A. Schmitz, and H. Reichl, “Development of a planar micro fuel cell with thin film and micro patterning technologies,” Journal of Power Sources, Vol. 131, 2004, pp.73-78.

40.A. Hakenjos, H. Muenter, U. Wittstadt, and C. Hebling, “A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding,” Journal of Power Sources, Vol. 131, 2004, pp.213-216.

41.A. Taniguchi, T. Akita, K. Yasuda, and Y. Miyazaki, “Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation,” Journal of Power Sources, Vol. 130, 2004, pp. 42-49.

42.L. J. Bnville, H. R. Kunz, Y. Song, A. Mientek, and M. Williams, A. Ching, and James M. Fenton, “Development and demonstration of a higher temperature PEM fuel cell stack,” Journal of Power Sources, Vol. 144, 2005, pp.107-112.

43.X. Li, and I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs,” International Journal of Hydrogen Energy, Vol. 30, 2005, pp.359-371.

44.F. Barbir, H. Gorgun, and X. Wang, “Relationship between pressure drop and cell resistance as a diagnostic tool for fuel cells,” Journal of Power Sources, Vol. 141, 2005, pp.96-101.

45.H. Xu, Y. Song, H. R. Kunz, and J. M. Fenton, “Effect of elevated temperature and reduced relative humidity on ORR kinetics for PEM fuel cells,” Journal of The Electrochemical Society, Vol. 152, 2005, pp.A1828-A1836.

46.G. Karimi, and X. Li, “Electroosmotic flow through polymer electrolyte membranes in PEM fuel cells,” Journal of Power Sources, Vol. 140, 2005, pp.1-11.

47.T. Gu, W. K. Lee, and J. W. Van Zee, “Quantifying the ‘reverse water gas shift’ reaction inside a PEM fuel cell,” Applied Catalysis B: Environmental, Vol. 56, 2005, pp.43-49.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code