Responsive image
博碩士論文 etd-0720106-113425 詳細資訊
Title page for etd-0720106-113425
論文名稱
Title
以液相沉積法於負型氮化鎵基板上備製氧化矽及氧化鈦薄膜之特性分析
Characterization of Silicon Oxide and Titanium Oxide Films Prepared on n-GaN by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-14
繳交日期
Date of Submission
2006-07-20
關鍵字
Keywords
液相沉積法、溫差法、氧化鈦、氧化矽、氮化鎵
TD-LPD, LPD, Silicon oxide, Titanium oxide, GaN
統計
Statistics
本論文已被瀏覽 5725 次,被下載 0
The thesis/dissertation has been browsed 5725 times, has been downloaded 0 times.
中文摘要
探討氧化矽及氧化鈦薄膜於負型氮化鎵基板上的物理和化學特性,且利用金氧半結構來分析電特性。另一方面利用不同氧體的熱退火來改善薄膜特性。
Abstract
In this study, SiO2 and TiO2 films were deposited on GaN, their physical and chemical properties were measured. An Al/SiO2/GaN and Al/TiO2/GaN MOS structures were used for the electrical measurements. To improve the electrical properties, we investigated the characteristics of SiO2 and TiO2 films after annealing in nitrogen, oxygen, and nitrous oxide ambient.
The highest dielectric constant of 3.91 and 28.68, and lowest leakage current density of 8.97×10-5 A/cm2 at 2 MV/cm and 2×10-2 A/cm2 at 1 MV/cm for the N2O-annealed SiO2 film and TiO2 film can be obtained.
目次 Table of Contents
Chapter 1 1
Introduction 1
1-1 Background of GaN-based Materials 1
1-2 GaN Metal-Oxide-Semiconductor Field Effect Transistors 3
1-3 Motivations 5
1-4 Advantages of Liquid Phase Deposition 8
References: 13
Chapter 2 19
Experiment 19
2-1 Deposition System 19
2-2 Mechanisms of TD-LPD-SiO2 20
2-3 Mechanisms of LPD-TiO2 21
2-4 Deposition Processes 22
2-4-1 Wafer Cleaning Procedures 22
2-4-2 Preparation of Deposition Solution 22
2-4-3 Films Deposit 24
2-4-4 Fabrication of Metal-Oxide-Semiconductor Structure 25
2-5 Characterizations 27
2-5-1 Physical and Chemical Properties 27
2-5-2 Electrical Properties 28
References: 37
Chapter 3 38
Results and Discussion 38
3-1 TD-LPD-SiO2 on GaN as a Function of H3BO3 Volume 39
3-1.1 Deposition Rate of TD-LPD-SiO2 Films Prepared with 39
3-1.2 FE-SEM Views of TD-LPD-SiO2 Films 40
3-1.3 AFM Analysis of TD-LPD-SiO2 Films 40
3-1.4 XRD Patterns of TD-LPD-SiO2 Films 41
3-1.5 XPS Analysis of TD-LPD-SiO2 Films 41
3-1.6 SIMS Depth Profile of TD-LPD-SiO2 Films 42
3-1.7 FTIR Spectra of TD-LPD-SiO2 Films 43
3-1.8 Model for Deposition Mechanism 43
3-1.9 Leakage Current Densities of TD-LPD-SiO2 Films as a Function of H3BO3 volume 43
3-1.10 Capacitance-Voltage Measurements of TD-LPD-SiO2 Films as a function of H3BO3 Volume 44
3-2 Improvement of Electrical Characteristics by N2, O2, and N2O Post-annealing 47
3-2.1 Electric Characteristics of TD-LPD-SiO2 Films Prepared at Different Annealing Temperature in N2 Ambient for 1 Hour 47
3-2.2 Electric Characteristics of TD-LPD-SiO2 Films Prepared at Different Annealing Temperature in O2 Ambient for 1 Hour 49
3-2.3 Electric Characteristics of TD-LPD-SiO2 Films Prepared at Different Annealing Temperature in N2O Ambient for 1 Hour 50
3-2.4 Summary of Annealing Treatments 51
3-3 (NH4)2S Treatment for GaN Surface 53
3-4 LPD-TiO2 Deposited on GaN 55
3-4.1 Deposition Rate of LPD-TiO2 Films 55
3-4.2 FE-SEM Views of LPD-TiO2 Films 55
3-4.3 AFM Analysis of LPD-TiO2 Films 56
3-4.4 XRD Patterns of LPD-TiO2 Films 56
3-4.5 XPS Analysis of LPD-TiO2 Films 57
3-4.6 Electric Characteristics of LPD-TiO2 Film Prepared with 15 ml H3BO3 57
3-5 Improvement of Electrical Characteristics by N2 and N2O Post-annealing 59
3-5.1 Electric Characteristics of TD-LPD-SiO2 Films Prepared at Different Annealing Temperature in N2 Ambient for 1 Hour 59
3-5.2 Electric Characteristics of TD-LPD-SiO2 Films Prepared at Different Annealing Temperature in N2O Ambient for 1 Hour 60
References: 90
Chapter 4 94
Conclusions 94
參考文獻 References
[01] Chia-Lin Chen, “Influences of GaN Nucleation Layer on the Quality of GaN / Sapphire by LP-MOCVD”, 2004.
[02] Z.Z. Bandic, P.M. Bridger, E.C. Piquette, T.C. McGill, R.P. Vaudo, V.M. Phanse and J.M. Redwing, “High voltage (450 V) GaN Schottky rectifiers”, Appl. Phys. Lett. Vol. 74, pp. 1266-1268, 1999.
[03] S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, “Fabrication and performance of GaN electronic devices”, Materials Science and Engineering, vol. 150, pp. 1-158, 2000.
[04] J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, ”Growth and fabrication of GaN/AlGaN heterojunction bipolor transistor”, Appl. Phys. Lett. Vol. 74, pp. 2702-2704, 1999.
[05] M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, ”AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrate”, Appl. Phys. Lett., vol. 77 pp. 1339-1341, 2000.
[06] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abermathy, ”Atomic structure and electric properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature”, Appl. Phys. Lett., vol. 73, pp. 3893-3895, 1998.
[07] J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, ”Gd2O3/GaN metal-oxide-semiconductor field-effect transistor”, Appl. Phys. Lett., vol. 77, pp. 3230-3232, 2000.
[08] Yoshitaka Nakano, Takashi jimbo, “Electrical characterization of SiO2 / n-GaN metal-insulator-semiconductor diodes”, J. Vac. Sci. Technol. B, vol. 21(4), p 1364 2003.
[09] F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, and C.R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3) / GaN metal-oxide –semiconductor field-effect transistors “, Appl. Phys. Lett., vol. 73(26), pp. 3893-3895, 1998.
[10] F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, and C.R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3) / GaN metal-oxide –semiconductor field-effect transistors “, Appl. Phys. Lett., vol. 73(26), pp. 3893-3895, 1998.
[11] S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, “Fabrication and performance of GaN electronic devices ”, Materials Science and Engineering, vol. 150, pp. 1-158, 2000.
[12] C.R. Abernathy, F. Ren, S. J. Pearton, M. Hong, M. Marcus, unpublished results, 1997.
[13] F. Ren, C.R. Abermathy, J. D. MacKenzie, B.P. Gila, S.J. Pearton, et al. (EDs.), Proceedings of the MRS Symposium, vol. 483, p. 433, 1997.
[14] H. Kawai, M. Hara, F. Nakamura, S. Imanaga, ”MOCVD growth technologies for applications in AlGaN/GaN high electron mobility transistors”, Electron. Lett., vol. 34, p. 592, 1998.
[15] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abermathy, ”Atomic structure and electric properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature”, Appl. Phys. Lett., vol. 73, pp. 3893-3895, 1998.
[16] F. Ren, C. R. Abermathy, J. D. MacKenzie, B. P. Gila, S. J. Pearton, M. Hong, M. A. Marcus, M. J. Schurman, A.G. Baca, R.J. Shul, Solid-State Electron., Vol. 42(12), p. 2177, 1998.
[17] M. Hong, K.A. Anselm, J.P. Mannaerts, J. Kwo, A.Y. Cho, A.R. Kortan, C.M. Lee, J.I. Chyi, T.S. Lay, presented at North American Conference on Molecular Beam Epitaxy, Banff, Canada, 10-13 October 1999, J. Vac. Sci. Technol. B, 2000, in press.
[18] S. Arulkumaran, T. Egawa, H. Ishikawk, T. Jimbo, M. Umeno, ”Investigations SiO2/n-GaN and Si3N4/n-GaN insulator-semiconductor interfaces with low interface state density”, Appl. Phys. Lett., vol. 73, pp. 809-811, 1998.
[19] T. Hashizume, R. Nakasaki, H. Hasegawa, in : Proceedings of the Electronic Marterials Conference, 1999.
[20] M. Hong, H.M. Ng, J. Kwo, A.R. Kortan, J.N. Baillargeon, S.N.G. chu, J.P. Mannaerts, A.Y. Cho, F. Ren, C.R. Abernathy, S.J. Pearton, J.I. Chyi, in : R.F. Kopf, A.G. Baca, S.N.G. Chu (Eds.), Proceedings of The Electrochemical Society on Compound Semiconductor Power Transistors Ⅱ and State-of-the-art Program on Compound Semiconductors ⅩⅩⅩⅡ, vol. 2000/1. p. 103.
[21] R. Therrien, G. Lucovsky, R. F. Davis, Phys. Statist. Sol., (a), p. 793, 1999.
[22] S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, “Fabrication and performance of GaN electronic devices”, Materials Science and Engineering, vol. 150, pp. 1-158, 2000.
[23] F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, and C.R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3) / GaN metal-oxide –semiconductor field-effect transistors “, Appl. Phys. Lett., vol. 73(26), pp. 3893-3895, 1998.
[24] F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, and C.R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3) / GaN metal-oxide –semiconductor field-effect transistors “, Appl. Phys. Lett., vol. 73(26), pp. 3893-3895, 1998.
[25] M.A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska and M.S. Shur, “AlGaN / GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor”, IEEE, Electron. Dev. Lett., vol. 21, pp. 63-65. 2000.
[26] C. Y. Chang and S. M. Sze, “Wafer-Cleaning Technology”, ULSI Technology, McGrow-Hill, New York, p. 259, 1996.
[27] Yuan Taur, Tak H. Ning, “Fundamentals of Modern VLSI Devices”, p. 96.
[28] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[29] The Oxide Handbook, ed. G. V. Samsonov ( IFI/Plenum, New York),
p. 316, 1973.
[30] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G.
Schmid, “Structural and electrical characterization of TiO2 grown
from titanium tetrakis-isopropoxide (ttip) and ttip/H2O ambients”,
J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[31] M. A. Butler and D. S. Ginley, “Principles of photoelectrochemical
solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[32] T. Carlson and G. L. Griffin, “Photooxidation of methanol using
V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,”
J. Phys. Chem. , vol. 90, pp.5896-5900, 1986.
[33] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical
characterization of SiO2-TiO2 thin-films with graded refractive-index
profiles,” Journal of the JapanInstitute of Metals, vol. 62, pp. 1069-1074, 1998.
[34] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[35] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-films by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[36] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chemical Communications, pp. 569-570, 2001.
[37] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides” Thin Solid Films, vol. 323, pp. 59-62, 1998.
[38] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-films with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[39] Wu-Hung Shieh, “Fluorinated Oxynitride Films Propared by Temperature-Difference Deposition Method Using the Aqueous Solution of Hydrofluorosilicic Acid and Ammonium Hydroxide”, 2002.
[40] Shu-Ming Chang, “The Electrical Properties of Liquid-Phase Deposited SiOF Films with Annealing Treatmen”, 2003.
[41] Y. Ishikawa, T. Fujui, and H. Hasegawa, J. Vac. Sci. & Technol., B 15, p. 1163.
[42] R. Lyer, R. R. Chang, A. Dubey, and D. L. Lile, J. Vac. Sci. & Technol., B 6, p.1174.
[43] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K. Tan, S. Ingrey and D. Landheer: J. Vac. Sci. & Technol., A 12, p. 2701.
[44] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating”, J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1998.
[45] Shu-Ming Chang, “The Electrical Properties of Liquid-Phase Deposited SiOF Films with Annealing Treatment”, 2003.
[46] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating,” J. Electronchem. Soc., vol. 135, pp. 2013-2016, 1988.
[47] A. Hishinuma, T. Goda, M. Kitaoka, S. Hayashi, and H. Kawahara, “Formation of Silicon Dioxide Films in Acidic Solution,” Applied Surface Sci., vol. 48, pp. 405-408, 1991.
[48] C. F. Yeh and C. L. Chen, “Bond-Structure Changes of Liquid-Phase Deposited Oxide (SiO2-xFx) on N2 Annealing,” Appl. Phys. Lett., vol. 66, pp. 938-940, 1995.
[49] Wu-Hung Shieh, “Fluorinated Oxynitride Films Propared by Temperature-Difference Deposition Method Using the Aqueous Solution of Hydrofluorosilicic Acid and Ammonium Hydroxide”, 2002.
[50] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating”, J. Electrochem. Soc., vol. 135, p. 2013, 1989.
[51] Liang Feng, Yongjun Liu, and Jiming Hu, “Molecularly imprinted TiO2 Thin Film by Liquid Phase Deposition for determination of Glutamic Acid”, Langmuir, vol. 20, p 1786, 2004.
[52] T. Maruyama, K. Yorozu, T. Noguchi, Y. Seki, Y. Saito, T. Araki and Y. Nanishi, “Surface treatment of GaN and InN using (NH4)2Sx”, J. Cryst. Growth., vol. 1022, pp. 237–239, 2002.
[53] H.R. Wu, K.W. Lee, T.B. Nian, D.W. Chou, J.J. Huang Wu, Y.H. Wang, M.P. Houng, P.W. Sze, Y.K. Su, S.J. Chang, C.H. Ho, C.I. Chiang, Y.T. Chern, F.S. Juang, T.C. Wen, W.I. Lee, J.I. Chy, “Liquid phase deposited SiO2 on GaN”, Materials Chemistry and Physics, vol. 80, pp. 329-333, 2003.
[54] Y.S. Kim, M.Y. Sung, Y.H. Lee, B.K. Ju, and M.H. Oh, “The Influence of Surface Roughness on the Rlrctric Conduction Process in Amorphous Ta2O5 Thin Films”, J. Electrochemical Soc., vol. 146, pp. 3398-3402, 1999.
[55] Jia-Ming Yu, “Preparation of silicon titanium oxide based on hexafluorotitanic acid for next generation gate oxide”, 2004.
[56] B. Agius, S. Rigo, and F.Rochet, “Structural evolution of very thin silicon oxide films during thermal growth in dry oxygen”, Appl. Phys. Lett., vol. 44, pp. 48-50, 1984.
[57] M.K. Lee, C.F. Yen, and J.J. Hung, “Electrical Characteristics of Liquid Phase Deposition TiO2 Films on GaAs Substrate with (NH4)2Sx Treatment, Journal of The Electrochemical Society, vol. 153, pp. F77-F80, 2006.
[58] Jae-Hong Kim, Chai-O Chung, Dongsun Sheen, Yong-Sun Sohn, Hyun-Chul Sohn, Jin-Woong Kim, and Sung-Wook Park, “Effect of fluorine incorporation on silicon dioxide prepared by high densityplasma chemical vapor deposition with SiH4/O2/NF3 chemistry”, Journal of Applied Physics, vol. 96, pp. 1435-1442, 2004.
[59] T.K. Lin, “Defect model and the current-voltage characteristics in dielectric thin films”, Chinese Journal of Physics, vol. 27, pp.351-369, 1988.
[60] M.K. Lee, C.F. Yen, and J.J. Hung, “Electrical Characteristics of Liquid Phase Deposition TiO2 Films on GaAs Substrate with (NH4)2Sx Treatment, Journal of The Electrochemical Society, vol. 153, pp. F77-F80, 2006.
[61] Tsung-Shiun Wu, “High Dielectric Constant and Low Leakage Current TiO2 Thin Films on Silicon”, 2004.
[62] H.C. Casey, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN”, Appl. Phys. Lett., vol. 68, pp. 1850-1852, 1996.
[63] E.H. Nicollian, and J.R. Brews, “MOS Physics and Technology”, 2003.
[64] B. C. Kang, S. B. Lee, J. H. Boo, “Growth of TiO2 Thin Films on Si(100) Substrates Using Single Molecular Precursors by Metal Organic Chemical Vapor Deposition,” Surface and Coating Technology, vol. 131, pp. 88-92, 2000.
[65] S. Lee and J. W. Park, “Effect of Fluorine on moisture absorption amd dielectric properties of SiOF films,” Materials Chemistry and Physics, vol. 53, pp. 150-154, 1998.
[66] Ming-Kwei LEE, Chung-Min Shih, Shu-Ming Chang, Hong-Chi Wand and Jung-Jie Huang, “Characterization of thermally annealed fluorinated silicon dioxide films prepared by liquid phase deposition”, J. J. Appl. Phys., vol. 44, pp. L220-L223, 2005.
[67] Ming-Kwei LEE, Chung-Min Shih, Shu-Ming Chang, Hong-Chi Wand and Jung-Jie Huang, “Characterization of thermally annealed fluorinated silicon dioxide films prepared by liquid phase deposition”, J. J. Appl. Phys., vol. 44, pp. L220-L223, 2005.
[68] Seoghyeong Lee and Jong-Wan Park, “Effect of fluorine on moisture absorption and dielectric properties of SiOF films”, Materials Chemistry and Physics, vol. 53, pp. 150-154, 1998.
[69] Jia-Ming Yu, “Preparation of silicon titanium oxide based on hexafluorotitanic acid for next generation gate oxide”, 2004.
[70] Jia-Ming Yu, “Preparation of silicon titanium oxide based on hexafluorotitanic acid for next generation gate oxide”, 2004.
[71] Wai-Jyh Chang, Mau-Phon Houng, and Yeong-Her Wang, “Electrical properties and modeling of ultrathin impurity doped silicon dioxides”, Journal of Applied Physics, vol. 90, pp.5171-5179, 2001.
[72] E.P. Gusev, H.C. Lu, E.L. Garfunkel, T. Gustafsson, M.L. Green, “Growth and characterization of ultrathin nitrided silicon oxide films”, IBM J. RES. DEVELOP., vol. 43, pp. 265-286, 1999.
[73] Yow-Jon Lin and Chang-Feng You, “Enhancement of Schottky barrier height on p-type GaN by (NH4)2Sx treatment”, Journal of Applied Physics, vol. 99, pp. 053706-053706-2, 2003.
[74] T. Maruyama, K. Yorozu, T. Noguchi, Y. Seki, Y. Saito, T. Araki, and Y. Nanishi, “Surface treatment of GaN and InN using (NH4)2Sx”, phys. stat. sol.,vol. 7, pp. 2031-2034, 2003.
[75] Y.S. Kim, M.Y. Sung, Y.H. Lee, B.K. Ju, and M.H. Oh, “The Influence of Surface Roughness on the Rlrctric Conduction Process in Amorphous Ta2O5 Thin Films”, J. Electrochemical Soc., vol. 146, pp. 3398-3402, 1999.
[76] Jia-Ming Yu, “Preparation of silicon titanium oxide based on hexafluorotitanic acid for next generation gate oxide”, 2004.
[77] Tsung-Shiun Wu, “High dielectric constant and low leakage current TiO2 thin films on silicon”, 2004.
[78] S. Simamoto, Y. Sakata, J. Kojima, N. Kume, and Y. Tsujimoto, ”Lacouered polymer ceramic composite dielectric film for capacitors”, Conference Record of IEEE, 1992.
[79] H.C. Casey, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN”, Appl. Phys. Lett., vol. 68, pp. 1850-1852, 1996.
[80] Chung-Min shih, “Deposition and applications of titanium oxide by liquid phase deposition”, 2005.
[81] M.K. Lee, C.M. Shih, and S.M. Chang, “Characterization of thermally annealed fluorinated silicon dioxide films prepared liquid phase deposition”, J. Journal. Applied Physics, vol. 44, pp. L220-L223, 2005.
[82] Seoghyeong Lee, Materials Chemistry and Physics, vol. 53, p. 150, 1998.
[83] M.K. Lee, C.M. Shih, and S.M. Chang, “Characterization of thermally annealed fluorinated silicon dioxide films prepared liquid phase deposition”, J. Journal. Applied Physics, vol. 44, pp. L220-L223, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.212.26.248
論文開放下載的時間是 校外不公開

Your IP address is 44.212.26.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code