Responsive image
博碩士論文 etd-0720106-130031 詳細資訊
Title page for etd-0720106-130031
論文名稱
Title
噴流及霧化冷卻之實驗研究
An Experimental Study of Jet Impingement and Spray Cooling
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
185
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-29
繳交日期
Date of Submission
2006-07-20
關鍵字
Keywords
霧化冷却、旋轉數、噴流
rotational, impingement cooling, CSC, spray cooling
統計
Statistics
本論文已被瀏覽 5749 次,被下載 1902
The thesis/dissertation has been browsed 5749 times, has been downloaded 1902 times.
中文摘要
本研究以實驗方式探討噴流及霧化冷卻之熱/流場特性。本論文分成三個部份進行分析討論。第一部分探討不同衝撃位置對於旋轉管道內部之熱傳影響。參數包括轉數(0-600rpm)、阻塊幾何形狀(矩形及半圓形)以及噴流雷諾數(5000-9000)。最後探討旋轉數(Ro)、衝擊位置、粗糙面以及噴流雷諾數對紐賽數的影響。第二部分則以MPIV系統量測液體微噴流的流場分佈。其中針對6種不同噴口大小與目標璧面比例(0.86、1、1.2、1.5、2及3)以及八種不同噴流雷諾數(50、100、150、200、250、300、350及400)進行實驗研究。第三部份探討不同工作流體(水及R-134a)之霧化冷卻。其中針對不同噴嘴大小、距離以及不同偉柏數,利用光學影像系統及LDV系統分別量測液滴大小及速度分佈,同時針對R-134a的部份量測極限熱通量及熱傳係數,這方面的研究結果可增強進行雷射手術時的熱移除效果同時降低皮膚表面的傷害。
Abstract
An experimental investigation was carried out to examine the jet impingement and spray cooling. There are three parts in this study. The first part was investigated the effects of jet impinging positions on heat transfer from rib-roughened (square and semi-circular) channels with rotational speeds of up to 600 rpm. Results were presented for rotating number (Ro), jet impinging position, surface roughness and jet Reynolds number effects on local Nusselt numbers. The second part was studied instantaneous velocity fields for a single slot liquid microjet using MPIV. The streamwise mean velocity fields and flow evolutions with six nozzle-to-target spacing ratios of 0.86, 1, 1.2, 1.5, 2 and 3 and for eight jet Reynolds numbers Re of 50, 100, 150, 200, 250, 300, 350 and 400 were measured and calculated. The third part was investigated the flow field and heat transfer mechanism for water spray and cryogen (R-134a) spray cooling. An optical image system was used to quantify the droplet size and distribution and Laser Doppler Velocimetry (LDV) measurements to obtain the local velocity distributions. The effects of mass flow rate and average droplet velocity, and spray exit-to-target distance on the surface heat flux including the corresponding critical heat flux (CHF) were explored for R-134a which may enhance the current cryogen spray cooling (CSC) technique that assists laser therapy of dermatoses.
目次 Table of Contents
LIST OF CONTENTS………………………………………………..….i
LIST OF TABLES………………………….…………………………..v
LIST OF FIGURES……………………………………………………vi
NOMENCLATURE……………………………………………………ix
摘要………………………………………….…………………………xiii
ABSTRACT……………………………………………………….…..xiv

CHPATERS
I. INTRODUCTION………..……………………………….……..1
1.1 Literature Survey………………………………………..…….3
1.1.1 Jet Impingement..……………………………………3
1.1.2 Spray Cooling………………………………………15
1.2 Problem Formulation…...……………………………………28
1.2.1 Impingement Cooling………………….. ………….28
1.2.2 Microjet Impingement…………………………….. 29
1.2.3 Spray Cooling………………………………………30
1.3 Scope and Objectives of the Present Study…………………..30
1.3.1 Impingement Cooling.. …………………………….30
1.3.2 Microjet Impingement……………………………...30
1.3.3 Spray Cooling………………………………………32
1.4 Thesis Organization…………...……………………………..30
II. EXPERMIEMTAL..…….....……………………………………35
2.1 Impingement Cooling………………………………………..35
2.1.1 Rotational Facility………………………………….35
2.1.2 Test Section and Temperature Measurement……….36
2.2 Microjet Impingement.………………………………………38
2.2.1 Geometrics and Fabrications of Test Section…........38
2.2.2 MPIV System………………………………………40
2.3 Spray Cooling………………………………………………..42
2.3.1 Test Facility………………………………………...42
2.3.2 Liquid Supply System for Water Spray…………….43
2.3.3 Liquid Supply System for CSC…………………….44
2.3.4 Spray Mass Flux Measurements……………………44
2.3.5 Droplet Photography and Profiling…………………45
2.3.6 LDV Measurement……...………….………………46
2.3.7 The Test Section and Temperature Measurement
of CSC……………………………………………...47
III. METHODS AND ANALYSIS……………………...…………..64
3.1 Impingement Cooling………………………………………..64
3.1.1 Heat Flux and Heat Transfer Coefficient...…………64
3.2 Microjet Impingement………………………….…………….66
3.2.1 Flow Field Analysis………………………………...66
3.3 Spray Cooling………………………………………………..67
3.3.1 Heat Transfer Coefficient…………………………..67
3.3.2 Analysis of Droplet Size Variation…………………67
3.3.3 Cooling Effectiveness………………………………68
3.3.4 Cooling Efficiency………………………………….68
IV. EXPERIMENTAL UNCERTAINTIES………………………..70
4.1 Impingement Cooling………………………………………..71
4.2 Microjet Impingement……………………………………….72
4.3 Spray Cooling………………………………………………..72
V. RESULT AND DISCUSSION………..………………………...74
5.1 Impingement Cooling………………………………………..77
5.1.1 Combined Effect of Rotation and Impingement
Position (offset and types A and B)…..…………….77
5.1.2 Combined Effect of Rotation, Impingement
Position, and Rib Geometry……….………………..79
5.2 Microjet Impingement……………………………………….80
5.2.1 Initial Velocity Profiles……………………………..81
5.2.2 Axial Velocity Distribution/Flow Structure
Identification………….……………………………81
5.3 Spray Cooling………………………………………………..84
5.3.1 Water Spray……………………………………….. 84
5.3.1.1 Water Droplet Size Profiling.………………84
5.3.1.2 Azimuthal Vector Plots on Sector Plane……87
5.3.1.3 Mean Axial velocity and Velocity
Fluctuation Distribution……………….…...89
5.3.1.4 Mean Radial Velocity and Velocity
Fluctuation Distribution……………………90
5.3.1.5 Average Jet Centerline Velocity Profiles
and Impact Velocity………………………..91
5.3.2 Cryogen (R-134a) Spray Cooling…………………...93
5.3.2.1 Spray Image Observation…………………..93
5.3.2.2 Average Spray Centerline Velocity
/Temperature………………………..…...... 94
5.3.2.3 Spray Droplet Size Distribution…………….95
5.3.2.4 Heat Flux…………………………….……..97
5.3.2.5 Cooling Efficiency vs Cooling
Effectiveness……………………………….98
VI. SUMMARY…………………………………………………….138
6.1 Conclusions…………………………………………………138
6.1.1 Impingement Cooling……………………………...138
6.1.2 Microjet Impingement……………………………..138
6.1.3 Water Spray………………………………………..139
6.1.4 Cryogen (R-134a) Spray Cooling………………….140
6.2 Future work and Recommendation...……………………….142
6.2.1 Impingement Cooling………………….…………..142
6.2.2 Microjet Impingement……………………………..142
6.2.3 Spray Cooling……………………………………...143
REFERENCES……………………………………………………….144
APPNDIX A…......................................................................................156
PUBLICATION LIST………………………………………………..167

LIST OF TABLES

Table 2-1 Test section geometries and operation conditions for
thermocouple measurement……………..………………...49
Table 2-2 Results of microjets characterization……………………...50
Table 2-3 Measurement parameters and test conditions……………..51
Table 2-4 The geometric of test section and dynamic parameters
for water spray…………………………………………….52
Table 2-5 The geometric of test section and dynamic parameters
for CSC..……………………………………….………….53
Table 4-1 Uncertainties of relevant parameters
for impingement cooling………………..………………...74
Table 4-2 Uncertainties of relevant parameters for microjet
impingement……………….……………………………...75
Table 4-3 Uncertainties of geometric dimensions and relevant
parameters for spray cooling……………………………...76
Table 5-1 The dimensionless length of flow regime for different
slot width at different Reynolds number……………..….101
Table 5-2 The comparison of thermophysical properties between
FC-72 and R-134a at 1 atm…………..…………………..103


LIST OF FIGURES

Figure 2-1 Schematics of rotational system…………………………..54
Figure 2-2 Detailed dimensions of the test section……………………...55
Figure 2-3 Geometrics of test section…………………………………...56
Figure 2-4 Fabrication of microjets……………………………………..57
Figure 2-5 Schematic of test section and measuring system……………58
Figure 2-6 Test facility of water spray…………………………………..59
Figure 2-7 Test facility of cryogen spray………………………………..60
Figure 2-8 Schematics of cryogen delivery nozzles…………………….61
Figure 2-9 Droplet photography and LDV measurement……………….62
Figure 2-10 Schematics of heater and section…………………………..63
Figure 5-1 Combined effect of rotation and impinging position on
the axial variation of local Nusselt number for square
ribs………………………………………………………..104
Figure 5-2 Combined effect of rotation and impinging position
of the axial variation of local Nusselt number
for semi-circular ribs……………………………………..105
Figure 5-3 Combined effect of rotation and geometry of ribs on
the axial variation of local Nusselt number for Type A…..106
Figure 5-4 Combined effect of rotation and ribbed surface on the
axial variation of local Nusselt number for Type B………107
Figure 5-5 Effect of rotation, impingement position and geometric
of ribs on the axial variation of local Nusselt number……108
Figure 5-6 The velocity vector distribution at two different slot
width and at the same Reynolds number…………………109
Figure 5-7 The centerline velocity distribution at different
Reynolds number…………………………………………110
Figure 5-8 The centerline velocity distribution at different
Reynolds number…………………………………………111
Figure 5-9 The centerline velocity distribution for the different
Reynolds number…………...…………………………....112
Figure 5-10 The velocity vector distribution at b=200μm…………….113
Figure 5-11 The streamlines distribution at b=200μm………………...114
Figure 5-12 The rebounded velocity and streamlines distribution
for the centerline and started with b=100μm……………..115
Figure 5-13 Magnified (x1.1) images of the water spray……………...116
Figure 5-14 Images of droplets at different ……………………..117
Figure 5-15 Histograms of droplet size distribution at different ..119
Figure 5-16 Sauter mean diameter (d32) as a function of jet exit
velocity and its correlation with relevant parameters….....121
Figure 5-17 Spray velocity vector distribution at different
azimuthal angle with =1188……………...………...122
Figure 5-18 Spray velocity vector distribution at different
azimuthal angle with =1604………………………..123
Figure 5-19 Spray velocity vector distribution at different
azimuthal angle with =2094……………………......124
Figure 5-20 Spray velocity vector distribution at different
azimuthal angle with =2717……………………......125
Figure 5-21 Axial dimensionless velocity and fluctuation
distribution along radial direction at different
dimensionless downstream distance with
=1188, 1604, 2094, 2717…………………………………126
Figure 5-22 Azimuthal dimensionless velocity and fluctuation distribution along radial direction at different
dimensionless downstream distance with =1188,
1604, 2094, 2717………………………………………....127
Figure 5-23 Dimensionless average centerline velocity along
downstream distance with =1188, 1604,
2094, 2717 and the corresponding Rej.…………………..128
Figure 5-24 Dimensionless impact velocity and dp with
=1188, 1604, 2094, and 2717…………………….…129
Figure 5-25 Photographs (x1.9) of cryogen sprays sprayed by
0.2mm and 0.3mm micro nozzles at H=60mm…………..130
Figure 5-26 The axial velocity and temperature distribution
along spray distance z for different micro nozzles….……131
Figure 5-27 Impact velocity and impact droplet diameter vs
Weber number at different spray distance………………..132
Figure 5-28 Experimental droplet diameter distribution and
evaporation rate based on D2 law………………………...133
Figure 5-29 Boiling curves for dj=0.2mm and 0.3mm at different
spray distance…..………………………………………...134
Figure 5-30 Heat transfer coefficient vs heat flux for dj=0.2mm
and 0.3mm………………………….…………………….135
Figure 5-31 Cooling efficiency vs CHF and Weber number
for dj=0.2mm and 0.3mm………………….……………..136
Figure 5-32 Cooling efficiency and critical heat flux vs cooling
effectiveness for dj=0.2mm and 0.3mm………………….137
參考文獻 References
1. A. M. Kiper, 1984, “Impinging Water Jet Cooling of VLSI Circuits,” International Communication of Heat and Mass Transfer, Vol. 11, pp. 517-526.
2. A. H. Lefebvre, 1989, “Atomization and Sprays,” Hemisphere Publishing Corporation.
3. A. K. Mohanty and A. A. Tawfek, 1993, “Heat Transfer due to a Round Jet Impinging Normal to a Flat Surface,” International Journal Heat and Mass Transfer, Vol. 36, No. 6, pp. 1639-1647.
4. A. Kufferath, B. Wende, and W. Leuckel, 1999, “Influence of Liquid Flow Conditions on Spray Characteristics of Internal-Mixing Twin-Fluid Atomizers,” International Journal Heat and Fluid Flow, Vol. 20, pp. 513-519.
5. A. Bernard, L. E. Brizzi and J. L. Bousgarbiès, 1999, “Study of Several Jets Impinging on a Plane Wall: Visualizations and Laser Velocimetry Investigations,” Journal of Heat Transfer, Vol. 121, pp. 808-812.
6. A. H. Beitelmal, M. A. Saad and C. D. Patel, 2000, “The Effect of Inclination on the Heat Transfer Between a Flat Surface and an Impinging Two-Dimensional Air Jet,” International Journal of Heat and Fluid Flow, Vol. 21, pp. 156-163.
7. A. Edris, B. Choi, G. Aguilar, and J. S. Nelson, 2003, “Measurements of Laser Light Attenuation Following Cryogen Spray Cooling Spurt Termination,” Lasers in Surgery and Medicine, Vol. 32, pp. 143-147.
8. A. K. Chaniotis, D. Poulikakos, and Y. Ventikos, 2003, “Dual Pulsating or Steady Slot Jet Cooling of a Constant Heat Flux Surface,” Journal of Heat Transfer, Vol. 125, pp. 575-586.
9. A. C. Chambers, D. R. H. Gillespie, P. T. Ireland, and G. M. Dailey, 2005, “The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel,” Journal of Heat Transfer, Vol. 127, pp. 358-365.
10. A. G. Pautsch, and T. T. Shedd, 2005, “Spray Impingement Cooling With Single- and Multiple-nozzle arrays. Part I: Heat Transfer Data Using FC-72,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 3167-3175.
11. B. N. Pamadi and I. A. Belov, 1980, “A Note on the Heat Transfer Characteristics of Circular Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 23, pp. 783-787.
12. B. E. Gelfand, 1996, “Droplet Breakup Phenomena in Flows With Velocity Lag,” Progress Energy Combustion Science, Vol. 22, pp. 201-265.
13. B. Anari, T. E. Milner, and B. S. Tanenbaum, 1998, “A Comparative Study of Human Skin Thermal Response to Sapphire Contact and Cryogen Spray Cooling,” IEEE Transactions on Biomedical Engineering, Vol. 45, No. 7, pp. 934-941.
14. B. M. Pikkula, J. H. Torres, J. W. Tunnell, and B. Anvari, 2001, “Cryogen Spray Cooling: Effects of Droplet Size and Spray Dansity on Heat Removal,” Lasers in Surgery and Medicine, Vol. 28, pp.103-112
15. B. Majaron, S. Kimel, W. Verkruysse, G. Aguilar, K. Pope, L. O. Svaasand, E. J. Larvernia, and J. S. Nelson, 2001, “Cryogen Spray Cooling in Laser Dermatology: Effects of Ambient Humidity and Frost Formation,” Lasers in Surgery and Medicine, Vol. 28, pp. 469-476.
16. B. M. Pikkula, J. W. Tunnell, and B. Anvari, 2002, “Methodology for Estimating Instantaneous Heat Removal From Human Skin in Response to Cryogen Spray Cooling,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, TX, USA, pp. 23-26.
17. B. Majaron, L. O. Svaasand, G. Aguilar, and J. S. Nelson, 2002, “Intermittent Cryogen Spray Cooling for Optimal Heat Extraction During Dermatologic Laser Treatment,” Physics in Medicine and Biology, Vol. 47, pp. 3275-3288.
18. B. M. Pikkula, J. W. Tunnell, and B. Anvari, 2003, “Methodology for Characterizing Heat Removal Mechanism in Human Skin During Cryogen Spray Cooling,” Annals of Biomedical Engineering, Vol. 31, pp. 493-504.
19. B. Horacek, J. Kim, and K. T. Kiger, 2004, “Spray Cooling Using Multiple Nozzles: Visualization and Wall Heat Transfer Measurements,” IEEE Transactions on Device and Materials Reliability, Vol. 4, No. 4, pp. 614-625.
20. B. M. Pikkula, J. W. Tunnell, D. W. Chang, and B. Anvari, 2004 “Effects of Droplet Velocity, Diameter, and Film Height on Heat Removal During Cryogen Spray Cooling,” Annals of Biomedical Engineering, Vol. 32, pp. 1131-1140.
21. B. Basinger, G. Aguilar, and J. S. Nelson, 2004, “Effect of Skin Indentation on heat Transfer During Cryogen Spray Cooling,” Lasers in Surgery and Medicine, Vol. 34, pp. 155-163.
22. B. Kao, K. M. Kelly, G. Aguilar, Y. Hosaka, R. J. Barr, and J. S. Nelson, 2004, “Evaluation of Cryogen Spray Cooling Exposure on in Vitro Model Human Skin,” Lasers in Surgery and Medicine, Vol. 34, pp. 146-154.
23. B. Horacek, K. T. Kiger, and J. Kim, 2005, “Single Nozzle Spray Cooling Heat Transfer Mechanisms,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 1425-1438.
24. B. P. E. Dano, J. A. Liburdy, and K. Kanokjaruvijit, 2005, “Flow Characteristics and Heat Transfer Performances of a Semiconfined Impinging Array of Jets: Effect of Nozzle Geometry,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 691-701.
25. C. F. Ma, Y. Zhuang and S. C. Lee, 1997, “Impingement Heat Transfer and Recovery Effect With Submerged Jets of Large Prandtl Number Liquid-II. Initially Laminar Confined Slot Jets,” International Journal Heat and Mass Transfer, Vol. 40, No. 6, pp. 1491-1500.
26. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, 1999, “PIV Measurements of a Microchannel Flow,” Experiments in Fluids, Vol. 27, pp. 414-419.
27. C. Gau, I. C. Lee, 2000, “Flow and Impingement Cooling Heat Transfer Along Triangular Rib-Roughened Walls,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 4405-4418.
28. C. D. Meinhart and H. Zhang, 2000, “The Flow Structure Inside a Micofabricated Inkjet Printhead,” Journal of Microelectromechanical Systems, Vol. 9, No. 1, pp. 67-75.
29. C. H. Chiou, G. B. Lee, H. T. Hsu, P. W. Chen, and P.C. Liao, 2002, “Micro Devices Integrated With Microchannels and Electrospray Nozzles Using PDMS Casting Techniques,” Sensors and Actuators B, Vol. 86, pp. 280-286.
30. C. H. Shen, and C. Gau, 2004, “Thermal Chip Fabrication With Arrays of Sensors and Heaters for Micro-Scale Impingement Cooling Heat Transfer Analysis and Measurements,” Biosensors and Bioelectronics, Vol. 20, pp. 103-114.
31. D. C. Wadsworth, I. Mudawar, 1990, “Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid,” Journal of Heat Transfer, Vol. 112, pp. 891-898.
32. D. T. Vader, F. P. Incoropera, and R. Viskanta, 1991, “Local Convective Heat Transfer From a Heated Surface to an Impinging, Planar Jet of Water,” International Journal of Heat and Mass Transfer, Vol. 34, No. 3, pp. 611-623.
33. D. J. Womac, S. Ramadhyani, and F. P. Incropera, 1993, “Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets,” Journal of Heat Transfer, Vol. 115, pp. 106-115.
34. D. Lytle and B. W. Webb, 1994, “Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings,” International Journal of Heat and Mass Transfer, Vol. 37, No. 12, pp. 1687-1697.
35. D. H. Wolf, F. P. Incropera and R. Viskanta, 1996, “Local Jet Impingement Boiling Heat Transfer,” International Journal Heat and Mass Transfer, Vol. 39, No. 7, pp. 1395-1406.
36. D. P. Rini, R. H. Chen, and L. C. Chow, 2002, “Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling,” Journal of Heat Transfer, Vol. 124, pp. 63-72.
37. D. V. Pence, P. A. Boeschoten, and J. A. Liburdy, 2003, “Simulation of Compressible Micro-Scale Jet Impingement Heat Transfer,” Journal of Heat Transfer, Vol. 125, pp. 447-453.
38. E. N. Wang, L. Zhang, L. Jiang, J. M. Koo, K. E. Goodson, and T. W. Kenny, 2002, “Micromachined Jet Arrays for Liquid Impingement Cooling of VLSI Chips,” Solid-State Sensor, Actuator and Microsystems Workshop, pp. 46-49.
39. E. Cabrera, and J. E. Gonzalez, 2003, “Heat Flux Correlation for Spray Cooling in the Nucleate Boiling Regime,” Experimental Heat Transfer, Vol. 16, pp. 19-44.
40. E. Karapetian, G. Aguilar, S. Kimel, E. J. Lavernia, and L. S. Nelson, 2003, “Effects of Mass Flow Rate and Droplet Velocity on Surface Heat Flux During Cryogen Spray Cooling,” Physics in Medicine and Biology, Vol. 48, pp. N1-N6.
41. E. N. Wang, L. Z.hang, L. Jiang, J. M. Koo, J. G. Maveety, E. A. Sanchez, and K. E. Goodson, 2004, “Micromachined Jets for Liquid Impingement Cooling of VLSI Chips,” Journal of Microelectromechanical Systems, Vol. 13, No. 5, pp. 833-842.
42. G. Gau and C. C. Lee, 1992, “Impingement Cooling Flow Structure and Heat Transfer Along Rib-Roughened Walls,” International Journal of Heat and Mass Transfer, Vol. 135, No. 11, pp. 3009-3020.
43. G. Miyake, M. Hirata, and N. Kasagi, 1994, “Heat Transfer Characteristics of an Axisymmetric Jet Impinging on a Wall With Concentric Roughness Elements,” Experimental Heat Transfer, Vol. 7, pp. 121-141.
44. G. M. Faeth, and L. P. Hsiang, 1995, “Structure and Breakup Properties of Sprays,” Journal of Multiphase Flow, Vol. 21, pp. 99-127.
45. G. Aguilar, B. Majaron, W. Verkruysse, Y. Zhou, J. S. Nelson, and E. J. Lavernia, 2001, “Theoretical and Experimental Analysis of Droplet Diameter, Temperature, and Evaporation Rate Evolution in Cryogenic,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 3201-3211.
46. G. Aguilar, W. Verkruysse, B. Majaron, L. O. Svaasand, E. J. Lavernia, J. S. Nelson, 2001, “Measurement of heat flux and heat transfer coefficient during continuous cryogen spray cooling for laser dermatologic surgery,” IEEE Journal on Spectrose Top Quantum Electron, Vol. 7, pp. 1013-1021.
47. G. Aguilar, B. Majaron, K. Pope, L. O. Svaasand, E. J. Lavernia, and J. S. Nelson, 2001, “Influence of Nozzle-to-Skin Distance in Cryogen Spray Cooling for Dermatologic Laser Surgery,” Lasers in Surgery and Medicine, Vol. 28, pp. 113-120.
48. G. Aguilar, S. H. Díaz, E. J. Lavernia, and J. S. Nelson, 2002, “Cryogen Spray Cooling Efficiency: Improvement of Port Wine Stain Laser Therapy Through Multiple-Intermittent Cryogen Spurts and Laser Pulses,” Lasers in Surgery and Medicine, Vol. 31, pp. 27-35.
49. G. Singh, T. Sundararajan, and K. A. Bhaskaran, 2003, “Mixing and Entrainment Characteristics of Circular and Noncircular Confined Jets,” Journal of Fluids Engineering, Vol. 125, pp. 835-842.
50. G. Aguilar, B. Majaron, E. K.arapetian, E. J. Lavernia, and J. S. Nelson, 2003, “Experimental Study of Cryogen Spray Properties for Application in Dermatologic Laser Surgery,” IEEE Transactions on Biomedical Engineering, Vo. 50, No. 7, pp. 863-869.
51. G. Aguilar, G. X. Wang, and J. S. Nelson, 2003, “Effects of Spurt Duration on the Heat Transfer Dynamics During Cryogen Spray Cooling,” Physics in Medicine and Biology, Vol. 48, pp. 2169-2181.
52. G. Aguilar, G. X. Wang, and J. S. Nelson, 2003, “Dynamic Behavior of Cryogen Spray Cooling: Effects of Spurt Duration and Spray Distance,” Lasers in Surgery and Medicine, Vol. 32, pp. 152-159.
53. G. Aguilar, H. Vu, and J. S. Nelson, 2004, “Influence of Angle Between the Nozzle and Skin Surface on the Heat Flux and Overall Heat Extraction During Cryogen Spray Cooling,” Physics in Medicine and Biology, Vol. 49, pp. N147-N153.
54. G. Aguilar, L. O. Svaasand, and J. S. Nelson, 2005, “Effects of Hypobaric Pressure on Human Skin: Feasibility Study for Port Wine Stain Laser Therapy (Part I),” Lasers in Surgery and Medicine, Vol. 36, pp. 124-129.
55. G. Aguilar, W. Franco, J. Liu, L. O. Svaasand, and J. S. Nelson, 2005, “Effects of Hypobaric Pressure on Human Skin: Implications for Cryogen Spray Cooling (Part II),” Lasers in Surgery and Medicine, Vol. 36, pp. 130-135.
56. H. Liu, S. H. Winoto, and D. A. Shah, 1997, “Velocity Measurements within Confined Turbulent Jets: Application to Cardiovalvular Regurgitation,” Annals of Biomedical Engineering, Vol. 25, pp. 939-948.
57. I. Mudawar, and K. A. Estes, 1996, “Optimizing and Predicting CHF in Spray Cooling of a Square Surface,” Journal of Heat Transfer, Vol. 118, pp. 672-679.
58. J. H. Kim, S. M. You, and S. U. S. Choi, 2004, “Evaporative Spray Cooling of Plain and Microporous Coated Surfaces,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 3307-3315.
59. J. Yang, L. C. Chow, and M. R. Pais, 1996, “Nucleate Boiling Heat Transfer in Spray Cooling,” Journal of Heat Transfer, Vol. 118, pp. 668-671.
60. J. D. Bernardin, C. J. Stebbins, and I. Mudawar, 1997, “Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface,” International Heat and Mass Transfer, Vol. 40, No. 2, pp. 247-267.
61. J. R. Taylor, 1997, “An Introduction to Error Analysis,” University Science Books, second edition.
62. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrain, 1998, “A Particle Image Velocimetry System for Microfluidics,” Experiments in Fluids, Vol. 25, pp. 316-339.
63. J. H. Torres, J. S. Nelson, and B. S. Tanenbaum, 1999, “Estimation of Internal Skin Temperatures in Response to Cryogen Spray Cooling: Implications for Laser Therapy of Port Wine Stains,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 4, pp. 1058-1066
64. J. Lee and S. J. Lee, 1999, “Stagnation Region Heat Transfer of a Turbulent Axisymmetric Jet Impingement,” Experiment Heat Transfer, Vol. 12, pp. 137-156.
65. J. Schmidt, and H. Boye, 2001, “Influence of Velocity and Size of the Droplets on the Heat Transfer in Spray Cooling,” Chemical Engineering and Technology, Vol. 24, No. 3, pp. 255-260.
66. J. C. Ramirez-San-Juan, G. Aguilar, A. T. Tuqan, K. M. Kelly, and J. S. Nelson, 2005, “Skin Model Surface Temperatures During Single and Multiple Cryogen Spurts Used in Laser Dermatologic Surgery,” Lasers in Surgery and Medicine, Vo. 36, pp. 141-146.
67. K. Jambunathan, E. Lai, M. A. Moss and B. L. Button, 1992, “A Review of Heat Transfer Data for Single Circular Jet Impingement,” International Journal of Heat and Fluid Flow, Vol. 13, No. 2, pp. 106-115
68. K. Ichimiya, and N. Hosaka, 1992, “Experimental Study of Heat Transfer Characteristics Due to Confined Impinging Two-Dimensional Jets,” Experimental Thermal and Fluid Science, Vol. 5, pp. 803-807.
69. K. A. Estes, and I. Mudawar, 1995, “Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays,” Journal of Electronic Packaging, Vol. 117, pp. 323-332.
70. K. A. Estes and I. Mudawar, 1995, “Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces,” International Journal of Heat and Mass Transfer, Vol. 38, No. 16, pp. 1985-2996.
71. K. Oliphant, B. W. Webb, and M. Q. Mcquay, 1998, “An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooing in the Non-Boiling Regime,” Experimental Thermal and Fluid Science, Vol. 18, pp. 1-10.
72. K. V. Akella and J. C. Han, 1999, “Impingement Cooling in Rotating Two-Pass Rectangular Channels With Ribbed Walls,” Journal of Thermophysics and Heat Transfer, Vol. 13, No. 3, pp. 364-371.
73. K. Yoshida, Y. Abe, T. Oka, Y. H. Mori, and A. Nagashima, 2001, “Spray Cooling Under Reduced Gravity Condition,” Journal of Heat Transfer, Vol. 123, pp. 309-318.
74. L. G. Hansen, and B. W. Webb, 1993, “Air Jet Impingement Heat Transfer from Modified Surfaces,” Journal of Heat Transfer, Vol. 36, pp. 989-997.
75. L. Ortiz, and J. E. González, 1999, “Experiments on Steady-State High Heat Fluxes Using Spray Cooling,” Experimental Heat Transfer, Vol. 12, pp. 215-233.
76. L. A. Brignoni and S. V. Garimella, 2000, “Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 1133-1139.
77. L. O. Svaasand, L. L. Randeberg, G. Aguilar, B. Majaron, S. Kimel, E. J. Lavernia, and J. S. Nelson, 2003, “Cooling Efficiency of Cryogen Spray During Laser Therapy of Skin,” Lasers in Surgery and Medicine, Vol. 32, pp. 137-142.
78. L. Lin, and R. Ponnappan, 2003, “Heat Transfer Characteristics of Spray Cooling in a Closed Loop,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 3737-3746.
79. L. F. G. Geers, M. J. Tummers, and K. Hanjalic, 2004, “Experimental Investigation of Impinging Jet Arrays,” Experiments in Fluids, Vol. 36, pp. 946-958.]
80. M. M. Elkotb, 1982, “Fuel Atomization for Spray Modeling,” Progress Energy Combustion Science, Vol. 8, pp. 61-91.
81. M. Ghodbane and J. P. Holman, 1991, “Experimental Study of Spray Cooling With Freon-113,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 1163-1174.
82. M. Orme, 1997, “Experiments on Droplet Collision, Bounce, Coalescence and Disruption,” Prog. Energy combust. Sci. Vol. 23, pp. 65-79.
83. M. Ciofalo, I. D. Piazza, and V. Brucato, 1999, “Investigation of the Cooling of Hot Walls by Liquid Water Sprays,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 1157-1175.
84. M. M. Ismailov, T. Obokata, K. Kobayashi, and V. M. Polayev, 1999, “LDA/PDA Measurements of Instantaneous Characteristics in High Pressure Fuel Injection and Swirl Spray,” Experiments in Fluids, Vol. 27, pp. 1-11.
85. M. Moseler and U. Landman, 2000, “Formation, Stability, and Breakup of Nanojets,” Science, Vol.289, No. 18, pp. 1165-1169.
86. M. Fairweather, G. K. Hargrave, 2002, “Experimental Investigation of an Axisymmetric, Impinging Turbulent Jet. 1. Velocity Field,” Experiments in Fluids, Vol. 33, pp. 464-471.
87. M. Fairweather, G. K. Hargrave, 2002, “Experimental Investigation of an Axisymmetric, Impinging Turbulent Jet. 2. Scalar Field,” Experiments in Fluids, Vol. 33, pp. 539-544.
88. M. Anabel, L. C. Chow, D. Jian-Hua, L. Shuye, P. R. Dan, and L. Jennifer, 2002, “Spray Cooling at Low System Pressure,” Proceedings of the 2002 18th annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 169-175.
89. M. Angioletti, R. M. D. Tommaso, E. Nino, and G. Ruocco, 2003, “Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 1703-1713.
90. M. Fabbri, and V. K. Dhir, 2005, “Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets,” Journal of Heat Transfer, Vol. 127, pp. 760-769.
91. M. Fabbri, S. Jiang, and V. K. Dhir, 2005, “A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets,” Journal of Heat Transfer, Vol. 127, pp. 38-48.
92. M. R. O. Panão, and A. L. N. Moreira, 2005, “Thermo- and Fluid dynamics Characterization of Spray Cooling with Pulsed Sprays,” Experimental Thermal and Fluid Science, Vol. 30, Issue 2, pp. 79-96.
93. N. Ashgriz, R. Washburn, and T. Barbat, 1996, “Segregation of Drip Size and Velocity in Jet Impinging Splash-plate Atomizers,” International Journal Heat and Fluid Flow, Vol. 17, pp. 509-516.
94. P. L. Woodfield, M. Monde, and A. K. Mozumder, 2005, “Observations of High Temperature Impinging-Jet Boiling Phenomena,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 2032-2041.
95. Q. Cui, S. Chandra, and S. McCahan, 2003, “The Effect of Dissolving Salts in Water Sprays Used for Quenching a Hot Surface. Part 1: Boiling of Single Droplets,” Journal of Heat Transfer, Vol. 125, pp. 326-332.
96. Q. Cui, S. Chandra, and S. McCahan, 2003, “The Effect of Dissolving Salts in Water Sprays Used for Quenching a Hot Surface. Part 2: Spray Cooling,” Journal of Heat Transfer, Vol. 125, pp. 333-338.
97. R. D. Ingebo, 1984, “Atomization of Liquid Sheets in High Pressure Air Flow,” NASA TM-83731, NASA-Lewis Researcher Center, Cleveland, OH.
98. R. J. Goldstein, and M. E. Frnchett, 1988, “Heat Transfer From a Flat Surface to an Oblique Impinging Jet,” Journal of Heat Transfer, Vol. 110, pp. 84-90.
99. R. J. Moffat, 1988, “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 104, pp. 3-17.
100. R. J. Goldstein, K. A. Sobolik, and W. S. Seol, 1990, “Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface, Vol. 112, pp. 608-611.
101. R. H. Chen, L. C. Chow, and J. E. Navedo, 2002, “Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 4033-4043.
102. R. H. Chen, L. C. Chow, and J. E. Navedo, 2004, “Optimal Spray Characteristics in Water Spray Cooling,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 5095-5099.
103. S. J. Kline and F. A. McClintock, 1953, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, pp. 3-8.
104. S. V. Garimella, and R. A. Rice, 1995, “Confined and Submerged Liquid Jet Impingement heat Transfer,” Journal of Heat Transfer, Vol. 117, pp. 871-877.
105. S. Ashforth-Frost, K. Jambunathan, and C. F. Whitney, 1997, “Velocity and Turbulence Characteristics of a Semiconfined Orthogonally Impinging Slot Jet,” Experimental Thermal and Fluid Science, Vol. 14, pp. 60-67.
106. S. Nishio, and Y. C. Kim, 1998, “Heat Transfer of Dilute Spray Impinging on Hot Surface (Simple Model Focusing on Rebound Motion and Sensible Heat of Droplets),” International Journal Heat and Mass Transfer, Vol. 41, pp. 4113-4119.
107. S. S. Hsieh, J. T. Huang, and C. F. Liu, 1999, “Local Heat Transfer in a Rotating Square Channel with Jet Impingement,” Journal of Heat Transfer, Vol. 121, pp. 811-818.
108. S. A. Jazayeri, and X. Li, 2000, “Structure of Liquid-Sheet Sprays,” Particle and Particle Systems Characterization, Vol. 17, pp. 56-65.
109. S. Maurel, C. Solliec, 2001, “A Turbulent Plane Jet Impinging Nearby and Far From a Flat Plate,” Experiments in Fluids, Vol. 32, pp. 687-696.
110. S. P. Jang, S. J. Kim, and K. W. Paik, 2003, “Experimental Investigation of Thermal Characteristics for a Microchannel Heat Sink Subject to an Impinging Jet, Using a Micro-Thermal Sensor Array,” Sensors and Actuators A, Vol. 105, pp. 211-224.
111. S. Devasenathipathy, J. G. Santiago, S. T. Wereley, C. D. Meinhart, and K. Takehara, 2003, “Particle Imaging Techniques for Microfabricated Fluidic Systems,” Experiments in Fluids, Vol. 34. pp. 504-514.
112. S. S. Hsieh, T. C. Fan, and H. H. Tsai, 2004, “Spray Cooling Characteristics of Water and R-134a. Part I: Nucleate Boiling,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 5703-5712.
113. S. S. Hsieh, T. C. Fan, and H. H. Tsai, 2004, “Spray Cooling Characteristics of Water and R-134a. Part II: Transient Cooling,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 5713-5724.
114. S. S. Hsieh, C. Y. Lin, C. F. Huang, and H. H. Tsai, 2004, “Liquid Flow in a Micro-Channel,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 436-445.
115. S. Jiang, and V. K. Dhir, 2004, “Spray Cooling in a Closed System with Different Fractions of Non-condensibles in the Environment,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 5391-5406.
116. S. P. Jang, and S. J. Kim, 2005, “Fluid Flow and Thermal Characteristics of a Microchannel Heat Sink Subject to an Impinging Air Jet,” Journal of Heat Transfer, Vol. 127, pp. 770-779.
117. T. T. Shedd, and A. G. Pautsch 2005, “Spray Impingement Cooling With Single- and Multiple-nozzle arrays. Part II: Visualization and Empirical Models,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 3176-3184.
118. T. Dai, P. Diagaradjane, M. A. Yaseen, B. M. Pikkula, S. Thomsen, and B. Anvari, 2005, “Laser-Induced Thermal Injury to Dermal Blood Vessels: Analysis of Wavelength (585 nm vs. 595 nm), Cryogen Spray Cooling, and Wound Healing Effects,” Lasers in Surgery and Medicine, Vol. 37, pp. 210-218.
119. V. Narayana, J. Seyed-Yagoobi, and R. H. Page, 2004, “An Experimental Study of Fluid Mechanics and Heat Transfer in an Impinging Slot Jet Flow,” International Journal of Heat and Mass Transfer, Vol. 47. pp. 1827-1845.
120. W. Jia, and H. H. Qiu, 2003, “Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling,” Experimental Thermal and Fluid Science, Vol. 27, pp. 829-838.
121. W. Franco, G. X. Wang, J. S. Nelson and G. Aguilar, 2004, “Radial Heat Transfer Dynamics During Cryogen Spray Cooling,” Proceedings of IMECE04, pp. 13-20.
122. W. Jia, G. Aguilar, G. X. Wang, and J. S. Nelson, 2004, “Heat Transfer Dynamics During Cryogen Spray Cooling of Substrate at Different Initial Temperatures,” Physics in Medicine and Biology, Vol. 49, pp. 5295-5308.
123. W. Franco, J. Liu, G. X. Wang, J. S. Nelson and G. Aguilar, 2005, “Radial and Temporal Variations in Surface Heat Transfer During Cryogen Spray Cooling,” Physics in Medicine and Biology, Vol. 50, pp. 387-397.
124. Y. C. Kim, S. Nishio, and H. Ohkubo, 1997, “Heat Transfer in a High Temperature Region of Spray Cooling Interacting With Liquid Film Flow,” Heat Transfer-Japanese Research, Vo. 26, No. 4, pp. 236-248.
125. Y. Zhou, S. Lee. McDonell, S. Samuelsen, R. L. Kozarek, and E. J. Lavernia, 1997, “Influence of Operating Variables on Average Droplet Size During Linear Atomization,” Atomization and Sprays, Vol. 7, pp. 393-358.
126. Y. M. Qiao, and S. Chandra, 1998, “Spray Cooling Enhancement by Addition of a Surfactant,” Journal of Heat Transfer, Vol. 120, pp. 92-98.
127. Y. H. Hung, and L. S. Huang, 1998, “Hydrodynamic Characteristics for a Round Jet Impingement with Annular Confinement,” International Journal of Modeling and Simulation, Vol. 18, No. 3, pp. 180-189.
128. Z. H. Lin, Y. J. Chou, and Y. H. Hung, 1997, “Heat Transfer Behaviors of a Confined Slot Jet Impingement,” International Journal of Heat and Mass Transfer, Vol. 40, No. 5, pp. 1095-1107.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code