Responsive image
博碩士論文 etd-0720107-160235 詳細資訊
Title page for etd-0720107-160235
論文名稱
Title
微渠道中具表面粗糙物之被動式混合增強研究
Passive Mixing Enhancements in Different Geometric Microchannels with Roughened Surfaces
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-28
繳交日期
Date of Submission
2007-07-20
關鍵字
Keywords
被動式混合、微混合器、微質點影像測速儀、電滲流、微雷射誘發螢光技術
MPIV, micro-mixer, passive mixing, electroosmotic flow, μLIF
統計
Statistics
本論文已被瀏覽 5711 次,被下載 2460
The thesis/dissertation has been browsed 5711 times, has been downloaded 2460 times.
中文摘要
本實驗設計了不同幾何形狀的被動式微混合器,採用電滲驅動的方式推動流體 (0.027 ≤ Re ≤ 0.081),利用微質點影像測速儀 (MPIV) 量測微混合器內的速度場分布,並分析相關的物理現象,藉以判別與混合優劣的關係。以優碘與去離子水的混合實驗作為定性分析,並經由工具顯微鏡拍攝流場可視化;而藉由 rhodamine B與緩衝液混合實驗進行流場可視化與定性分析,以微雷射誘發螢光技術 (μLIF) 量測濃度場的分布情形,並分析混合效率的好壞。實驗結果顯示,Twr與Tcdr型的微混合器能產生混沌流,有效的提升混合品質。最後,將影響混合長度的相關參數,整理成一關係式 ,而此關聯式預測值與實驗值之誤差在10%以內。
Abstract
Experiments were investigated on passive mixing enhancements in different geometric microchannels with roughened surfaces and flow was driven by electroosmotic flow (0.027 ≤ Re ≤ 0.081). Experiments were perform using micro particle image velocimetry (MPIV) technology for velocity measurements and relative analysis. Iodine and DI water mixing experiments were captured by common optical microscope for flow visualization, and rhodamine B and buffers mixing experiments were measured by micro laser-induced fluorescence (µLIF) technology for concentration field measurements and analysis. The experimental results showed that the Twr and Tcdr micromixers can generate chaotic flow and enhance the mixing performance in the short channel length. Finally, the mixing length was developed in terms of within accuracy between the experimental data and prediction data.
目次 Table of Contents
目 錄

頁次
目錄............................................................................................................ i
表目錄...................................................................................................... iv
圖目錄....................................................................................................... v
符號說明................................................................................................ viii
中文摘要................................................................................................... x
英文摘要.................................................................................................. xi


第一章 緒論......................................................................................... 1
1-1 前言.......................................................................................... 1
1-2 混合器種類.............................................................................. 2
1-3 被動式混合機制...................................................................... 3
1-4 布朗運動.................................................................................. 4
1-5 電滲現象.................................................................................. 5
1-6 實驗背景與目的...................................................................... 6
1-7 文獻回顧.................................................................................. 6

第二章 實驗設備系統....................................................................... 13
2-1 MPIV與μLIF系統................................................................ 13
2-2 實驗設備................................................................................ 14
2-3 製程設備................................................................................ 15
2-4 相關設備................................................................................ 16

第三章 實驗方法及步驟................................................................... 28
3-1 微混合器製程........................................................................ 28
3-1-1 微混合器製作.................................................................28
3-2 螢光質點、螢光染劑與緩衝液配製...................................... 30
3-3 光學顯微鏡量測系統建立與分析方法................................ 31
3-4 MPIV與μLIF量測系統建立與分析方法............................ 32

第四章 理論分析............................................................................... 44
4-1 Einstein-Smoluchowski 方程式............................................ 44
4-2 雷諾數.................................................................................... 44
4-3 培克數.................................................................................... 45
4-4 拉伸率.................................................................................... 45
4-5 混合效率................................................................................ 45
4-6 參數分析................................................................................ 46

第五章 誤差分析............................................................................... 48

第六章 結果與討論........................................................................... 52
6-1 優碘與去離子水的混合........................................................ 52
6-2 速度向量................................................................................ 52
6-3 側向速度分析........................................................................ 53
6-4 濃度場觀測與分析................................................................ 54
6-5 關係式建立............................................................................ 55

第七章 結論與建議........................................................................... 72
7-1 結論........................................................................................ 72
7-2 建議與改進............................................................................ 73

參考文獻................................................................................................. 74
附錄A...................................................................................................... 80
參考文獻 References
1. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethysiloxane),” Anal. Chem., Vol. 70, 1998, pp. 4974-4984.
2. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, G. M. Whitesides, “Chaotic Mixer for Microchannels,” Science, Vol. 295, 2002, pp. 647-651.
3. T. J. Johnson, D. Ross, and L. E. Locascio, “Rapid Microfluidic Mixing,” Analytical Chemistry, Vol. 74, 2002, pp.45-51.
4. H. Wang, P. Ioventitti, E. Harvey, and S. Masood, “Passive Mixing in Microchannels by Applying Geometric Variations,” Proceedings of SPIE, Vol. 4982, 2003, pp.282-289.
5. N. T. Nguyen , and Z. Wu, “Micromixers - a Review,” Journal of Micromechanics and Microengineering, Vol. 15, 2005, pp.1-16.
6. J. S. H. Lee, Y. Hu, and D. Li, “Electrokinetic Concentration Gradient Generation Using a Converging–Diverging Mcrochannel,” Analytica Chimica Acta, Vol. 543, 2005, pp.99-108.
7. X. Fu, S. Liu, X. Ruan, and H. Yang , “Research on Staggered Oriented Ridges Static Micromixers,” Sensor and Actuators B, Vol. 114, 2006, pp.618-624.
8. M. Hoffmann, M. Schlüter, and N. Räbiger, “Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV,” Chemical Engineering Science, Vol. 61, 2006, pp.2968-2976.
9. S. S. Hsieh, H. C. Lin, and C. Y. Lin, “Electroosmotic Flow Velocity Measurements in a Square Microchannel,” Colloid and Polymer Science, Vol. 284, 2006, pp.1275-1286.
10. C. K. Chen, C. C. Cho, “Electrokinetically-driven Flow Mixing in Microchannels with Wavy Surface,” Journal of Colloid Interface Science, 2007, doi:10.1016/j.jcis.2007.03.033.
11. S. T. Kline, and F. A. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
12. R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” Journal of Fluids Engineering, Vol. 104, 1982, pp. 250-260.
13. K. Horicuchi, and P. Dutta, “Joule Heating Effects in Electroosmotically Driven Microchannel Flows,” Int. J. Heat Mass Transfer, Vol. 47, 2004, pp.3085-3095.
14. N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, “Generation of Solution and Surface Gradients Using Microfluidic Systems,” Langmuir, Vol. 16, 2000, pp.8311-8316.
15. S. Arulanandam, and D. Li, “Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping,” Colloids and Surfaces A, Vol. 161, 2000, pp.89-102.
16. S. Wiggiun and J. M. Ottino, “Foundations of Chaotic Mixing,” Philosophical Transaction, Royal Society, London, Vol. 362, 2004, pp. 937-970.
17. H. Wang, P. Iovenitti, E. Harvey, and S. Masood,” Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels,” Smart Materials and Structure, Vol. 11, 2002, pp.662-667.
18. Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, “Visualization of Convective Mixing in Microchannel by Fluorescence Imaging,” Measurement Science Technology, Vol. 14, 2003, pp. 114-121.
19. R. H. Liu, M. A. Streamler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” Journal of MicroElectroMechanical Systems, Vol. 9, 2000, pp. 190-197.
20. J. Park, S. M. Shin, K. Y. Huh, and I. S. Kang,“Application of Electrokinetic Instability for Enhanced Mixing in Various Micro - T-channel Geometries,” Physics of Fluids, Vol. 17, 2005, pp.1-4.
21. Y. Z. Liu, B. J. Kim, and H. J. Sung,“ Two-fluid Mixing in a Microchannel,” Heat and Fluid Flow, Vol. 25, 2004, pp.986-995.
22. S. H. Wong, M. C. L. Ward, and C. W. Wharton,“Micro T-mixer as a Rapid Mixing Micromixer,” Sensors and Actuators B, Vol.100, pp.359-379.
23. I. D. Yang, Y. F. Chen, H. T. Hsu, F. G. Tseng, and C. C. Chieng, “Passive Mixing and the Flow Characteristic of a H-Type Microchannel,”7th International conference on Miniaturized Chemical and Biochemical Analysis Systems, 2003, pp.1009-1012.
24. M. H. Oddy, J. G. Santiago, and J. C. mikkelsen,“Electrokinetic Instability Micromixing,” Anal. Chem., Vol. 73, 2001, pp.5822-5832.
25. B. He, B. J. Burke, X. Zhanf, R, Zhang, and F. E. Regnier, “A Picoliter-Volume Mixer for Microfluidic Analytical Systems,” Anal. Chem., Vol. 73, 2001, pp.1942-1947.
26. S. H. Wong, P. Bryant, M. Ward, and C. Wharton, “Investigation of Mixing in a Cross-Shaped Micromixer with Static Mixing Elements for Reaction Kinetics Studies,” Sensors and Actuators B, Vol. 95, 2003, pp.414-424.
27. J. K. Chen ,and R. J. Yang, “Electroosmotic Flow Mixing in Zigzag Microchannels,” Electrophoresis, Vol.28, 2007, pp.975-983.
28. L. H. Lu, K. S. Ryu, and C. Liu, “A Magnetic Microstirrer and Array for Microfluidic Mixing,” Journal of Microelectromechanical systems, Vol.11, 2002, pp.462-469.
29. A. E. Kamholz and P. Yager, “Theoretical Analysis of Molecular Diffusion in Pressure-driven Laminar Flow in Microfluidic Channels,” Biophysical Journal, Vol.80, 2001, pp.155-160.
30. D. Gobby, P.Angeli, and A. Gavriilidis, “Mixing Characteristics of T-type Microfluidic Mixers,” Journal of Micromechanics and Microengineering, Vol.11, 2001, pp.126-132.
31. Y. K. Lee, J. Deval, P. Tabling, and C. M. Ho, “Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows,” The 14th IEEE Workshop on MEMS Interlaken, Switzerland, 2001.
32. J. M. Rousseaux, L. Falk, H. Muhr, and E. Plasari, “Micromixing Efficiency of a Novel Sliding-surface Mixing device,”AIChE Journal, Vol.45, 1999, pp.2203-2213.
33. J. Evans, D. Liepmann, and A. P. Pisano, “Planar Laminar Mixer,” IEEE, 1997,pp.96-107.
34. J. M. Ottino, “Mixing, Chaotic advection, and Turbulence,” Annu. Rev. Fluid Mech., Vol.22, 1990, pp.207-253.
35. J. M. Ottino, and S. Wiggins, “Introduction Mixing in Microfluidics,” Th Royal Society, Vol.362, 2004, pp.923-935.
36. C. Simonnet, and A. Groisman,“Chaotic Mixing in a Steady Flow in a Microchannel,” The American Physical Society, Vol. 94, 2005, pp.1-4.
37. R. J. Yang, C. H. Wu, T. I. Tseng, S. B. Huang, and G. B. Lee, “Enhancement of Electrokinetically-driven Flow Mixing in Microchannel with Added Side Channels,” Japanese Journal of Applied Physics, Vol.44, 2005, pp. 7634-7642.
38. V. Hessel, H. Löwe, and F. Schönfeld, “Micromixers - A Review on Passive and Active Mixing Principles,” Chemical Engineering Science, Vol.60, 2005, pp.2479-2501.
39. S. Hardt, K. S. Drese, V. Hessel, and Schönfeld, “Passive micromixers for applications in the microreactor and μTAS field,” Microfluid Nanofluid, Vol.1, pp.108-118.
40. Y. Ito, and S. Komori, “A Vibration Technique for Promoting Liquid Mixing and Reaction in a Microchannel,” American Institute of Chemical Engineers, Vol.52, 2006, pp.3011-3017.
41. D. Sinton, and D. Li, “Electroosmotic Velocity Profiles in Microchannels,” Colloids and Surfaces A, vol.222, 2003, pp. 273-283.
42. A. O. Moctar, N. Aubry, and J. Batton, “Electro-hydrodynamic Micro-fluidic Mixer,” Lab on a Chip, Vol.3, 2003, pp.273-280.
43. K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan, and C. Liu, “Micro Magnetic Stir-bar Mixer Integrated with Parylene Microfluidic Channels,” Lab on a Chip, Vol.4, 2004, pp.608-613.
44. I. Glasgow, J. Batton, and N.
Aubry, “Electroosmotic Mixing in Microchannels, ”Lab on a Chip, Vol.4, 2004 , pp.558-562.
45. 李育嘉, “漫談布朗運動, ” 成功大學應數系,2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code