Responsive image
博碩士論文 etd-0720107-164657 詳細資訊
Title page for etd-0720107-164657
論文名稱
Title
以濺鍍及熱退火製程製作氧化鋅奈米線之研究
The Fabrication of ZnO Nanowires Using Sputtering and Thermal Annealing Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-25
繳交日期
Date of Submission
2007-07-20
關鍵字
Keywords
氧化鋅奈米線、濺鍍、熱退火
Sputtering, Thermal Annealing, ZnO Nanowires
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
本實驗使用反應性射頻磁控濺鍍法在室溫下於SiO2/Si基板上直接兩段式沈積ZnO緩衝層(Buffer Layer)與主層(Main Layer),之後再經由不同熱退火方式製備氧化鋅奈米線。研究藉由PL、SEM、XRD及EDS分析,探討緩衝層對提升主層結晶性之作用及主層內部不同鋅、氧比例對奈米線成長之影響,而後再利用不同退火溫度探討ZnO奈米線的成長機制。
由實驗結果得知,主層內部的多餘Zn成分是提供奈米線生長所需的source來源;當退火溫度高於Zn熔點時,因熱應力所產生的擠壓作用,會將主層內部的熔融Zn推擠至薄膜表面,之後再與空氣中的O2結合形成氧化鋅奈米線。而這其中又以CTA 600℃於空氣中退火90分鐘所獲得之氧化鋅奈米線具有最佳之生長型態及密度。
Abstract
In this thesis, we use reactive RF magnetron sputtering to deposit zinc oxide (ZnO) buffer layer and main layer on SiO2/Si substrate at room temperature. After various annealing treatments, the ZnO nanowires can be obtained. The effects of buffer layer on the crystallization of ZnO main layer and the zinc-to-oxygen ratio in the main layer on the growth of the ZnO nanowires are analyzed by PL, SEM, XRD and EDS. Finally, the growth mechanism of the ZnO nanowires is investigated by various annealing temperatures.
According to the experimental results, surplus zinc in the main layer is necessary for the ZnO nanowires growth. When the annealing temperature is higher than the melting point of zinc, it will melt and be extruded onto thin film surface as a result of the thermal stress. As soon as the melting zinc on the film surface reacts with the oxygen in the air, ZnO nanowires can be obtained. The optimum ZnO nanowires which possess better morphology and high density are revealed by conventional thermal annealing at 600℃ for 90 minutes.
目次 Table of Contents
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 Ⅶ
第一章 前言 1
第二章 理論分析 5
2.1 奈米微粒的基本理論 5
2.1.1 量子尺寸效應 5
2.1.2 小尺寸效應 6
2.1.3 表面效應 6
2.1.4 巨觀量子隧道效應 6
2.1.5 庫倫堵塞與量子穿隧 7
2.1.6 介電限域效應 7
2.2 奈米微粒的物理特性 8
2.2.1 熱學性質 8
2.2.2 磁學性質 8
2.2.3 光學性質 9
2.2.4 力學性質 10
2.2.5 表面活性及感測特性 10
2.2.6 光催化特性 10
2.3 奈米材料 11
2.4 氧化鋅材料 13
2.4.1 氧化鋅的發光機制 13
2.4.2 氧化鋅材料之應用 13
2.5 薄膜沈積原理 15
2.6 反應性射頻磁控濺鍍原理 15
第三章 實驗 17
3.1 薄膜備製 17
3.1.1 基板清洗流程 17
3.1.2 氧化鋅濺鍍系統與薄膜沈積 18
3.2 熱處理製程 19
3.3 薄膜特性分析 19
3.3.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析 19
3.3.2 X光繞射(X-Ray Diffraction, XRD)分析 20
3.3.3 能量分散光譜(Energy Dispersive X-ray Spectrum, EDS)分析 21
3.3.4 光致螢光光譜(Photoluminescence, PL)分析 21
第四章 結果與討論 23
4.1 氧化鋅緩衝層 23
4.1.1 微觀結構之SEM分析 23
4.1.2 結晶性之XRD分析 24
4.1.3 光特性之PL分析 25
4.2 氧化鋅主層與奈米線 25
4.2.1 濺鍍壓力之影響 25
4.2.2 氧氣濃度之影響 27
4.2.3 熱退火之影響 27
第五章 結論 33
參考文獻 35
圖 目 錄
圖2-1 氧化鋅(ZnO)結構示意圖 42
圖2-2 薄膜沈積步驟:(a)成核、(b)晶粒成長、(c)晶粒聚結、(d)縫道填補、(e)薄膜的沈積 42
圖3-1 射頻磁控濺鍍系統構造圖 43
圖3-2 射頻磁控濺鍍系統之操作流程圖 44
圖3-3 光致螢光光譜實驗系統 45
圖4-1 70%氧氣濃度及12 mtorr濺鍍壓力下沈積之ZnO緩衝層的SEM;(a)剖面圖,(b)表面圖 46
圖4-2 ZnO緩衝層之XRD分析圖 47
圖4-3 成長及無成長緩衝層之ZnO薄膜之XRD比較圖 48
圖4-4 成長及無成長緩衝層之ZnO薄膜之PL圖 49
圖4-5 未退火之ZnO主層之SEM剖面圖 50
圖4-6 退火後之ZnO主層之SEM剖面圖 50
圖4-7 退火前之ZnO主層之XRD分析圖 51
圖4-8 不同濺鍍壓力下固定21%氧氣濃度所沈積之ZnO主層經CTA退火後之SEM圖 52
圖4-9 不同濺鍍壓力下固定21%氧氣濃度所沈積之ZnO主層經CTA退火後之EDS分析圖 53
圖4-10 不同濺鍍壓力下固定21%氧氣濃度所沈積之ZnO主層經CTA退火後之鋅氧比例統計圖 54
圖4-11 不同氧氣濃度下固定3 mtorr濺鍍壓力所沈積之ZnO主層經CTA退火後之SEM圖 55
圖4-12 不同CTA退火溫度下持溫90分鐘之氧化鋅奈米線之SEM剖面圖;沈積條件為:濺鍍功率82W、氧氣濃度21%、濺鍍壓力3 mtorr 56
圖4-13 不同CTA退火溫度下持溫90分鐘之氧化鋅奈米線之XRD圖;沈積條件為:濺鍍功率82W、氧氣濃度21%、濺鍍壓力3 mtorr 57
圖4-14 不同退火溫度下之ZnO主層內部應力統計圖 58
圖4-15 利用CTA 600℃退火之ZnO奈米線成長示意圖 59
圖4-16 以CTA 600℃於空氣中退火90分鐘所生成之氧化鋅奈米線之SEM圖;(a)頂端,(b)傾斜角度 60
圖4-17 以RTA 600℃於通氧環境下退火45分鐘所生成之氧化鋅奈米絲之SEM圖 61
表 目 錄
表2-1 奈米材料的應用 62
表2-2 氧化鋅(ZnO)基本特性表 63
表3-1 反應性射頻濺鍍系統之ZnO緩衝層沈積參數 64
表3-2 反應性射頻濺鍍系統之ZnO主層沈積參數 65
表3-3 氧化鋅(ZnO)之JCPDS Data 66
表3-4 鋅(Zn)之JCPDS Data 66
表3-5 矽(Si)之JCPDS Data 67
表4-1 不同退火溫度之奈米線型態統計 68
表4-2 氧化鋅主層於不同退火溫度下所得之XRD繞射角度、平面間距與應力值 69
參考文獻 References
[1]H. Ohta, M. Orita and M. Hirano, “Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO”, J. Appl. Phys., vol. 89(10), pp. 5720-5725, (2001).
[2]C. C. Chang and C. S. Chang, “Site-specific growth to control ZnO nanorods density and related field emission properites”, Solid State Commun., vol. 135, pp. 765-768, (2005).
[3]C. J. Lee, et al., “Field emission from well-aligned zinc oxide nanowires grown at low temperature”, Appl. Phys. Lett., vol. 81(19), pp. 3648-3650, (2002).
[4]J. T. Hu and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes”, Acc. Chem. Res., vol. 32, pp. 435-445, (1999).
[5]W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films”, Mater. Lett., vol. 55, pp. 67-72, (2002).
[6]S. Y. Chu, W. Water and J. T. Liaw, “Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering”, J. Eur. Cera. Soc., vol. 23, pp. 1593-1598, (2003).
[7]S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T. Williams, “Production and properties of p-n junctions in reactively sputtered ZnO”, Phys. B., vol. 308-310, pp. 1197-1200, (2001).
[8]P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering”, Vacuum, vol. 64, pp. 293-297, (2002).
[9]D. G. Baik and S. M. Cho, “Application of sol-gel films for ZnO/n-Si junction solar cells”, Thin Solid films, vol. 354, pp. 227-231, (1999).
[10]H. Kind, et al., “Nanowire ultraviolet photodetectors and optical switches”, J. Adv. Mater., vol. 14(2), pp. 158, (2002).
[11]R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett., vol.4(5), pp. 89, (1964).
[12]D. P. Yu, Q. L. Hang, Y Ding, et al., “Applied silica nanowires: Intensive blue light emitters”, Appl. Phys. Lett., vol. 73, pp. 3076, (1998).
[13]W. Q. Han, et al., “Continuous synthesis and characterization of silicon carbide nanorods”, Chem. Phys. Lett., vol. 265, pp. 237, (1997).
[14]D. Jezequel, J. Guenot, N. Jouini and F. Fievet, “Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics”, J. Mater. Res., vol. 10(1), pp. 77-83, (1995).
[15]J. H. Huang and C. P. Liu, “Fabrication of One-dimensional ZnO Nanorods by RF Magnetron Sputter”, J. Mater. Sci. and Engin., vol. 38(1), pp. 7-10, (2006).
[16]Alba Chittofrati and Egon Matijevic, “Uniform particles of Zinc oxide of different morphologies”, Colloide and Surf., vol. 48, pp. 65-78, (1990).
[17]楊閔智, 謝健許, 瓊姿鄭, 鄭宗杰, “以氫電漿乾式蝕刻法製作準直矽奈米草陣列”, 奈米通訊, vol. 12(3), pp. 44-49, (2005).
[18]B. Derrida, “Random-Energy Model: Limit of a Family of Disordered Models”, Phys. Rev. Lett., vol. 45, pp. 79-82, (1980).
[19]W. P. Halperin, “Quantum size effects in metal particles”, Rev. Mod. Phys., vol. 58, pp. 533-606, (1986).
[20]張立德, “跨世纪的新領域:奈米材料科學”, 科學, vol. 45, pp. 13-17, (1993).
[21]P. Ball and L. Garwin, “Science at the atomic scale”, Nature, vol. 355, pp. 761, (1992).
[22]張立德, 牟季美, “開拓原子和物質的中間領域-奈米粒子和奈米固體”, 物理, vol. 21(3), pp. 167-173, (1992).
[23]J. Lu and M. Tinkhan, “單電子晶體管”, 物理, vol. 27(3), pp. 137-140, (1998).
[24]L. F. Daniel and D. K. Christine, “Self-assembly of single electron transistors and related devices”, Chem. Soc. Rev., vol. 27, pp. 1 (1998).
[25]H. Tabagi, H. Ogawa and Y. Yamazaki, “Quantum size effects on photoluminescence of ultra fine particles”, Appl. Phys. Lett., vol. 56(24), pp. 2379, (1990).
[26]W. Wu, J. M. Herrman and P. Pichat, “Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohaxanone over neat and modified TiO2”, Catal. Lett., vol. 3, pp. 73, (1989).
[27]S. N. Frank and A. J. Bard, “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders”, J. Phys. Chem., vol. 81, pp. 1484-1488, (1977).
[28]J. K. Leland and A. J. Bard, “Photochemistry of colloidal semiconducting iron oxide polymorphs”, J. Phys. Chem., vol. 91, pp. 5076-5084, (1987).
[29]W. J. Albery and P. N. Bartlett, “The transport and kinetics of photogenerated carriers in colloidal semiconductor electrode particles”, J. Electrochem. Soc., vol. 131, pp. 315-325, (1984).
[30]甘炯耀, “ZnO之薄膜製備與發光性質研究”, 國立清華大學材料科學工程學系碩士論文, (2001).
[31]O. Milosevic, B. Jordovic and D. Uskokovic, “Preparation of fine spherical ZnO powders by an ultrasonic spray pyrolysis method”, J. Mater. Lett., vol. 19(4), pp. 165-170, (1994).
[32]K. Y. Jung, Y. C. Kang and S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis”, J. Mater. Sci. Lett., vol. 16, pp. 1848-1849, (1997).
[33]D. C. Look, “Recent advances in ZnO materials and devices”, Mater. Sci. and Engin. B, vol. 80, pp. 383-387, (2001).
[34]K. S. Weissenrieder and J. Muller, “Conductivity model for sputtered ZnO-thin film gas sensors”, Thin Solid Films, vol. 300, pp. 30-41, (1997).
[35]C. C. Lin, C. S. Hsiao, S. Y. Chen and S. Y. Cheng, “Ultraviolet emission in ZnO films controlled by point defects”, J. Electrochem. Soc., vol. 151(5), pp. G282-G288, (2004).
[36]M.T. Young and S.D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In Films”, Thin Solid Films, vol. 410, pp. 8-13, (2002).
[37]W. C. Shin and M. S. Wu, “Growth of ZnO films on GaAs substrates with a SiO2 buffer layer by RF planar magnetron sputtering for surface acoustic wave applications”, J. Cryst. Growth, vol. 137, pp. 319-325, (1994).
[38]M. L. Fuller, “Twinning in zinc oxide”, J. Appl. Phys., vol. 15, pp. 164-170, (1994).
[39]M. Fujii, et al., “Structure of tetrapod-like ZnO crystals”, J. Cryst. Growth, vol. 128, pp. 1095-1098, (1993).
[40]K. Murasawa, et al., “Polyacetal resin composition for antifriction abrasion-resistant composites”, JP, 05, 255571, (1993).
[41]M. Okamoto and T. Umeda, “Polycarbonate compositions containing zinc oxide whiskers with tetrapod structure”, JP, 05, 156170, (1993).
[42]莊達人, “VLSI製造技術”, 高立圖書股份有限公司, (1995).
[43]朱慧群, 丁瑞欽, 蔡繼業, 胡怡, “Influence of Homo-buffer Layers on Optical Properties of ZnO Thin Films”, 電子元件與材料, vol. 25, pp. 48-51, (2006).
[44]A. Setiawan, et al., “Study on MgO buffer in ZnO layers grown by plasma-assisted molecular beam epitaxy on Al2O3 (0001)”, Thin Solid Films, vol. 445, pp. 213-218, (2003).
[45]K. Koike, et al., “CaF2 growth as a buffer layer of ZnO/Si heteroepitaxy”, Physica E, vol. 21, pp. 679-683, (2004).
[46]A. Nahhas, H. K. Kim and J. Blachere, “Epitaxial growth of ZnO films on Si substrates using an epiaaxial GaN buffer”, Appl. Phys. Lett., vol. 78(11), pp. 1511-1513, (2001).
[47]A. A. Ashrafi, et al., “Role of ZnS buffer layers in growth of zincblende ZnO on GaAs substrates by metalorganic molecular-beam epitaxy”, J. Cryst. Growth, vol. 221(1-4), pp. 435-439, (2000).
[48]X. F. Zhu, et al., “The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates”, J. Cryst. Growth, vol. 193(3), pp. 316-321, (1998).
[49]K. H. Bang, D. K. Hwang and J. M. Myoung, “Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by radio-frequency magnetron sputtering”, Appl. Surf. Sci., vol. 207, pp. 359-364, (2003).
[50]k. Miyamoto, et al., “High-electron-mobility ZnO epilayers grown by plasma-assisted molecular beam epitaxy”, J. Cryst. Growth, vol. 265, pp. 34-40, (2004).
[51]H. Tampo, et al., “Degenerate layers in epitaxial ZnO films grown on sapphire substrates”, Appl. Phys. Lett., vol. 84(22), pp. 4412-4414, (2004).
[52]林素霞, “氧化鋅薄膜的特性改良及應用之研究”, 國立成功大學材料科學及工程研究所博士論文, (2003).
[53]E. G. Bylander, “Surface effects on the low-energy cathodo luminescence of zinc oxide”, J. Appl. Phys., vol. 49(3), pp. 1188-1195, (1978).
[54]B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions”, J. Electrochem. Soc., vol. 148(3), pp. G110-G113, (2001).
[55]M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, “Catalytic growth of zinc oxide nanoeires by vapor transport”, Adv. Mater., vol. 13(2), pp. 113-116, (2001).
[56]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee and S. T. Lee, “Nucleation and growth of Si nanowires form silicon oxide”, Phy. Rev. B., vol. 58, pp. 24-26, (1998).
[57]H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, “2.7.3 ZnO sputtering”, Semiconducting Transparent Thin Films, Institute of Physics Publishing Bristol and Philadelphoa, pp. 116-122.
[58]R. Hong, J. Shao, H. He, and Z. Fan, “Influence of buffer layer thickness on the structure and optical properties of ZnO thin films”, App. Sur. Sci., vol. 252, pp. 2888-2893, (2005).
[59]V. Gupta and A. Mansingh, “Influence of postd eposition annealing on the structural and optical properties of sputtered zinc oxid film”, J. Appl. Phys., vol. 80(2), pp. 1063-1073, (1996).
[60]W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films”, Mater. Lett., vol. 55, pp. 67-72, (2002).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.128.129
論文開放下載的時間是 校外不公開

Your IP address is 3.17.128.129
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code