Responsive image
博碩士論文 etd-0720109-133658 詳細資訊
Title page for etd-0720109-133658
論文名稱
Title
電池電源模組之輸出串聯運轉
Operation of Battery Power Modules with Serial Connection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-29
繳交日期
Date of Submission
2009-07-20
關鍵字
Keywords
同步整流、升壓式轉換器、電池電源模組、輸出串聯
synchronous rectification, boost converter, battery power module (BPM), serial connection
統計
Statistics
本論文已被瀏覽 5691 次,被下載 3074
The thesis/dissertation has been browsed 5691 times, has been downloaded 3074 times.
中文摘要
本論文提出電池電源模組(Battery Power Modules, BPMs)輸出串聯的架構,可以滿足需要高電壓驅動的負載。相較於傳統串聯電池組的應用,本架構具有電池運轉獨立、控制有彈性、保護裝置簡單、維護方便、系統可靠度高、電池管理機制易於實現等優點。各轉換器附屬於單一電池,元件電壓應力低,轉換效率高。
本論文建立以鉛酸電池搭配升壓式轉換器的電源模組輸出串聯架構,以高複雜度可程式邏輯元件(Complex Programmable Logic Device, CPLD)作為控制核心,利用同步整流技術提高轉換器的效率,分析其操作原理,設計製作電路,進行模組特性與電量平衡之實驗量測。此架構在相同導通率之下,操作於不連續導通模式時,具電池間自動電量平衡特性,惟效果不佳,僅可平衡些微電量差距;於連續導通模式時,則可藉由調整各模組的切換導通率,達到平衡電池電量的功能。
Abstract
This thesis presents a novel configuration of battery power by the outputs with serial connection of battery power modules (BPMs) for high voltage level loads. As compared to the conventional application of series-connected battery bank, this configuration operates the BPMs individually, and thus has the advantages of flexible control, convenient maintenance, and easily favorable battery management. The associated converter is equipped to a single battery pack, so that has lower component stresses leading to a higher circuit efficiency.
The operation and the design of a lead-acid battery power with series boost-typed BPMs are illustrated. The operation and the design of the converter are illustrated. The control of the power converters is accomplished by a complex programmable logic device (CPLD). To improve the converter efficiency, the technique of synchronous rectification is introduced. For the BPMs designed for discontinuous conduction mode (DCM) operation, charge equalization can be automatically achieved under the same duty-ratio, but is adequate only for batteries with a small difference. On the other hand, charge equalization for the BPMs with continuous conduction mode (CCM) can easily be accomplished by regulating the duty-ratios of the converters.
目次 Table of Contents
中文摘要 I
英文摘要 II
目錄 III
圖表目錄 V
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 論文大綱 3
第二章 電池應用概述 4
2-1 電池串並聯應用 4
2-2 含輸出轉換器之應用 6
2-3 電池電源模組並聯運轉 7
第三章 電源模組輸出串聯架構 10
3-1 升壓式電池電源模組 11
3-2 同步整流技術 14
3-3 平均相位移控制 18
3-4 連續導通模式 19
3-5 不連續導通模式 21
第四章 平衡放電 26
4-1 DCM平衡放電 26
4-2 CCM平衡放電策略 29
4-3 控制電路架構 34
4-4 電池電量量測 37
4-5 軟體規劃 39
第五章 平衡放電實驗量測 41
5-1 系統參數設定 41
5-2 DCM平衡放電實驗 44
5-3 CCM平衡放電實驗 47
5-4 輸出電壓量測 53
第六章 結論與未來研究方向 57
6-1 結論 57
6-2 未來研究方向 58
參考文獻 59
參考文獻 References
[1]W. G. Hurley, Y. S. Wong, and W. H. Wolfle, “Self-equalization of cell voltages to prolong the life of VRLA batteries,” IEEE Transactions on Industry Electronics, Vol. 56, No. 6, pp. 2115-2120. June 2009.
[2]M. Chen, Z. Zhang, Z. Feng, J. J. Chen, and Z. Qian, “An improved control strategy for the charge equalization of lithium ion battery,” in Proc. APEC, February 2009, pp.186-189.
[3]A. C. Baughman and M. Ferdowsi, “Double-tiered switched-capacitor battery charge equalization technique,” IEEE Transactions on Industry Electronics, Vol. 55, No. 6, pp.19-21, June 2008.
[4]H. S. Park, C. E. Kim, J. H. Lee, and J. K. Oh, “Charge equalization with series coupling of multiple primary windings for hybrid electric vehicle Li-ion battery system,” in Proc. PESC, June 2007, pp. 266-272.
[5]Z. G. Kong, C. B. Zhu, R. G. Lu, and S. K. Cheng, “Comparison and evaluation of charge equalization technique for series connected batteries,” in Proc. PESC, June 2007, pp. 1-6.
[6]Y. S. Lee and M. W. Cheng, “Intelligent control battery equalization for series connected Lithium-ion battery strings,” IEEE Transactions on Industry Electronics, Vol. 52, No. 5, pp. 1297-1307, October 2005.
[7]Y. C. Hsieh, S. P. Chou, and C. S. Moo, “Balance discharge for series-connected batteries,” in Proc. PESC, June 2004, Vol. 4, pp. 2697-2702.
[8]T. B. Gage, “Lead-acid batteries: key to electric vehicle commercialization; Experience with design, manufacture, and use of EVs,” in Proc. BCAA, January 2000, pp. 217-222.
[9]C. C. Chan, “An overview of electric vehicle technology,” Proceedings of the IEEE, Vol. 81, No. 9, pp. 1202-1213, September 1993.
[10]Y. C. Hsieh, W. C. Chen, K. S. Ng, and C. S. Moo, “Investigation on operating characteristics of individual cells in a lead-acid battery pack,” in Proc. PCC, April 2007, pp. 745-750.
[11]F. C. Laman, C. S. C. Bose, and S. R. Dasgupta, “Accelerated failure testing of valve regulated lead-acid batteries using gas studies,” in Proc. INTELEC, October 1998, pp. 74-78.
[12]P. T. Krein and R. S. Balog, “Life extension through charge equalization of lead-acid batteries,” in Proc. INTELEC, October 2002, pp. 516-523.
[13]S. West and P. T. Krein, “Equalization of valve-regulated lead-acid batteries: issues and life test results,” in Proc. INTELEC, September 2000, pp. 439-446.
[14]P. T. Krein, S. West, and C. Papenfuss, “Equalization requirements for series VRLA batteries” in Proc. BCAA, January 2001, pp. 125-130.
[15]C. S. Moo, K. S. Ng, and Y. C. Hsieh, “Parallel Operation of Battery Power Modules,” IEEE Transaction on Energy Conversion, Vol. 23, No. 2, pp. 701-707, June 2008.
[16]D. Linda and T. B. Reddy, “Handbook of batteries,” The 3rd edition, McGraw-Hall Companies, Inc., 2001.
[17]C. C. Chan, “The state of the art of electric and hybrid vehicles,” Proceedings of the IEEE, Vol. 90, No. 2, pp. 247-275, February 2002.
[18]V. Wouk, “The second century of electric and hybrid vehicles,” in Proc. VTC, May 1984, Vol. 34, pp. 183-190.
[19]楊模樺,“電動車輛用鋰電池發展趨勢”,電動車輛產業資訊專刊,2008年11月。
[20]“二次電池比較表”,台灣立凱電能科技股分有限公司。
[21]H. S Ban, J. M. Lee, H. S. Mok, and G. H. Choe, “Load sharing improvement in parallel-operated lead acid batteries,” in Proc. ISIE, June 2001, Vol. 2, pp. 1026-1031.
[22]梁適安,“交換式電源供給器之理論與實務設計”,全華書局,2001年 12月,第一版。
[23]M. H. Rashid, “Power electronics-circuits, devices, and applications,” The 3rd edition, Prentice-Hall International, Inc.
[24]F. L. Luo and H. Ye, “Positive output cascade boost converters,” Electric Power Applications, Vol. 151, No. 5, pp. 590-606, September 2004.
[25]S. Rudy and A. Jack, “MOSPOWER applications handbook,” Siliconix, Inc., 1984.
[26]S. Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge determination and their applications,” Journal of Power Sources, Vol. 96, No. 1, pp. 113-120, June 2001.
[27]J. H. Aylor, A. Thieme, and B. W. Johnso, “A battery state-of-charge indicator for electric wheelchairs,” IEEE Transactions on Industrial Electronics, Vol. 39, No. 5, pp. 398-409, October 1992.
[28]S. Pang, J. Farrell, D. Jie, and M. Barth, “Battery state-of-charge estimation,” in Proc. ACC, June 2001, Vol. 2, pp. 1644-1649.
[29]V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, “State-of-charge indication in portable applications,” in Proc. ISIE, June 2005, Vol. 3, pp. 1007-1012.
[30]I. Kurisawa and M. Iwata, “Internal resistance and deterioration of VRLA battery-analysis of internal resistance obtained by direct current measurement and its application to VRLA battery monitoring technique,” in Proc. INTELEC, October 1997, pp. 687-694.
[31]A. Kawamura and T. Yanagihara, “State of charge estimation of sealed lead-acid batteries used for electric vehicles,” in Proc. PESC, May 1998, Vol. 1, pp. 583-587.
[32]賈證主,“VHDL 數位系統設計與應用”,台科大圖書股份有限公司, 2004年12月。
[33]A. Delaille, M. Perrin, F. Huet, and L. Hernout, “Study of the “coup de fouet” of lead-acid as a function of their state-of-charge and state-of-health,” Journal of Power Sources, Vol. 158, No. 2, pp. 1019-1028, August 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code