Responsive image
博碩士論文 etd-0720109-184258 詳細資訊
Title page for etd-0720109-184258
論文名稱
Title
具定向晶格效應於銅銲線製程之有限元素法模擬與分析
Orientation effects on Cu wire bonding by finite element method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-18
繳交日期
Date of Submission
2009-07-20
關鍵字
Keywords
銅銲線接合、分子動力學、有限元素法
Molecular dynamics, Finite element method, Copper wire bonding
統計
Statistics
本論文已被瀏覽 5665 次,被下載 3507
The thesis/dissertation has been browsed 5665 times, has been downloaded 3507 times.
中文摘要
銲線接合製程因為技術成熟且產品可靠度高,目前仍是受歡迎的技術之ㄧ,以往製程以金線作為主要的銲線材料,但金價格持續上揚,成本考量之下,遂以銅線取代金線。
本文首先利用有限元素法模擬金及銅銲線接合之衝擊階段,分析兩者差異並作為之後多尺度模擬的比較基準。金銲線接合模擬部分,由於塊材鋁墊彈性模數高於金球,引發鋁墊及其下方金屬層的應力集中現象。而銅銲線接合模擬部分,雖然塊材鋁墊彈性模數低於銅球,但因為塊材鋁墊降伏強度不夠高,經由銅球衝壓後不僅產生鋁擠出現象,甚至在鋁墊及其下方金屬層內更存在嚴重的應力集中。
最後,本研究透過分子動力學模擬單晶鋁(100)之等速單軸拉伸來獲得單晶鋁(100)的材料性質,並結合有限元素法進行3D銲線接合之多尺度模擬分析,試圖以改變鋁墊材質的方式來減少銅球衝壓對基板造成的損壞。模擬結果顯示單晶鋁(100)具有比塊材鋁更低的彈性模數與更高的降伏強度,若利用單晶鋁(100)來取代塊材鋁作為接墊材料,不僅可以減低鋁墊與其下方金屬層的應力集中,達到防護基板的功效,更可以防止銅球衝壓對鋁墊造成的擠出現象。
Abstract
Ball bonding with gold wire has been the preferred choice to connect semiconductor chip and a lead frame. Recently, copper wires have been increasingly used to replace gold wires because of the rising price of gold. However, copper is harder than gold and has the tendency to induce the damage of bond pad or other underlying layers. Herein, Al pad material has to be changed from bulk to single crystal with (100) surface orientation in order to improve bonding reliability.
Firstly, finite element method was adopted to simulate 3D wire bonding. Also, from the impact of gold wire bonding, the stress concentration was found on pad and underlying layers due to the higher elastic modulus of bulk Al. During copper ball impact, there is not only the serious stress concentration at pad, but also a pad splash due to the insufficient strength of bulk Al, even though bulk Al has a lower elastic modulus.
Secondly, material properties of Al(100) were obtained by uniaxial tensile tests at constant speed. With molecular dynamics method, the incorporated result showed that Al(100) has the lower elastic modulus and higher yield strength than those of bulk material.
Finally, single crystal Al(100) was used, instead of bulk material, to carry out copper ball impact process by using multi-scale simulation. Al(100) material is able to transform impact energy into the resilience of strain energy effectively owing to its high yield stress and low elastic modulus. Results show that the application of Al(100) material reduces the effects of stress concentration and pad “splashing” successfully during copper ball impact process.
目次 Table of Contents
目錄 Ⅰ
表說明 Ⅲ
圖說明 Ⅳ
摘要 Ⅴ
Abstract Ⅵ
第一章 緒論 1
1-1 研究動機與目的 1
1-2 電子構裝簡介 3
1-3 銲線接合技術簡介 4
1-3-1 超音波接合法 5
1-3-2 熱壓接合法 6
1-3-3 超音波熱壓接合法 6
1-4 文獻回顧 7
1-5 研究方法 10
第二章 分子動力學理論及數值方法 14
2-1 分子動力學理論方法 16
2-1-1 勢能函數 16
2-1-2 運動方程 18
2-1-3 Nosé-Hoover溫度修正法 20
2-1-4 原子及應力計算方法 22
2-2 分子動力學數值方法 25
2-2-1 截斷半徑法 25
2-2-2 Verlet表列法結合Cell link表列法 26
2-2-3 無因次化 27
2-3 物理模型 28
第三章 有限元素法理論 33
3-1 時間積分(Time Integration) 34
3-2 控制方程式(Governing Equation) 37
3-3 應力及應變計算方法 42
第四章 有限元素模型建構與設定 44
4-1 基本假設 44
4-2 模型設定 45
4-2-1 瓷嘴及銲球設定 46
4-2-2 基板設定 46
4-3 非線性材料模型 47
4-3-1 Biliear Isotropic Model 48
4-3-2 Standard Piecewise Linear Plasticity Model 49
4-4 材料參數設定 50
4-5 網格元素及劃分 50
4-6 銲線接合過程及邊界條件設定 51
4-7 接觸設定 52
第五章 結果與討論 60
5-1 單晶鋁(100)之應力-應變曲線 60
5-2 驗證模擬 62
5-3 有限元素銲線接合模擬之定性分析 64
5-3-1 Case 1之應力分佈變化 65
5-3-2 Case 2之應力分佈變化 66
5-3-3 Case 3之應力分佈變化 66
5-3-4 應力分佈變化之定性比較分析 67
5-4 有限元素銲線接合模擬之定量分析 68
5-4-1 Case 1之衝壓歷程曲線變化 68
5-4-2 Case 2之衝壓歷程曲線變化 70
5-4-3 Case 3之衝壓歷程曲線變化 71
5-4-4 衝壓歷程曲線變化之定量比較分析 72
第六章 結論與未來展望 82
6-1 結論 82
6-2 未來展望 84
參考文獻 86
參考文獻 References
參考文獻
[1] C.J. Hang, C.Q. Wang, Y.H. Tian, M. Mayer, Y. Zhou, “ Microstructural study of copper free air balls in thermosonic wire bonding,” Microelectron. Eng., Vol. 85, pp. 1815-1819, 2008.
[2] J. Chen, D. Degryse, P. Ratchev and I. de Wolf, “Mechanical issues of Cu-to-Cu wire bonding,” IEEE Trans. Compon. Packag. Technol., Vol. 27, No. 3, pp. 539-545, 2004.
[3] H. Xu, C. Liu, V. V. Silberschmidt and H. Wang, “Effects of process parameters on bondability in thermosonic copper ball bonding,” Proc. 58th Electron. Comp. Technol. Conf., Lake Buena Vista, FL, USA, pp. 1424-1430, 2008.
[4] N. Srikanth, J. Premkumar, M. Sivakumar, Y. M. Wong and C. J. Vath, III, “Effect of wire purity on copper wire bonding,” Proc. 9th Electron. Packag. Technol. Conf., Singapore, pp. 755-759, 2007.
[5] H.-J. Kim, J. Y. Lee, K.-W. Paik, K.-W. Koh, J. Won, S. Choe, J. Lee, J.-T. Moon and Y.-J. Park, “Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability,” IEEE Trans. Comp. Packag. Technol., Vol. 26, No. 2, pp. 367-374, 2003.
[6] S. Murali, N. Srikanth and C. J. Vath, III, “An analysis of intermetallics formation of gold and copper ball bonding on thermal aging,” Mater. Res. Bull., Vol. 38, No. 4, pp. 637-646, 2003.
[7] C. J. Hang, C. Q. Wang, M. Mayer, Y. H. Tian, Y. Zhou and H. H. Wang, “Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging,” Microelectron. Reliab., Vol. 48, No. 3, pp. 416-424, 2008.
[8] P. Ratchev, S. Stoukatch and B. Swinnen, “Mechanical reliability of Au and Cu wire bonds to Al, Ni/Au and Ni/Pd/Au capped Cu bond pads,” Microelectron. Reliab., Vol. 46, No. 8, pp. 1315-1325, 2006.
[9] Pei-Chieh Chin, Chin-Yuan Hu, Hsiang-Chen Hsu, Shen-Li Fu, Chang-Lin Yeh and Yi-Shao Lai, “Characteristic of heat affected zone in thin gold wire and dynamic transient analysis of Wire Bonding for Microstructure of Cu/Low-K Wafer,” IEEE, pp. 297-300, 2007.
[10] Y. Liu, S. Irving and T. Luk, “Thermosonic wire bonding process simulation and bond pad over active stress analysis,” IEEE Trans. Electron. Packag. Manuf., Vol. 31, No. 1, pp. 61-71, 2008.
[11] Lim Chee Chian, Ng Kock Chai, Lee Cher Chia, Chai Min King, Lim Ong Seng and Chua Kok Yau, “Copper wire reliability and bonding integrity robustness on cratering sensitive bond pad structure,” Electronics Manufacturing and Technology, pp. 354-364, 2007.
[12] Vincent Fiori, Lau Teck Beng, Susan Downeyc, Sebastien Gallois-Garreignotd and Stephane Orain, “3D Multi Scale Modeling of Wire Bonding Induced Peeling in Cu/Low-K Interconnects : Application of an Energy Based Criteria and Correlations with Experiments,” Proc. 57th Electron. Comp. Technol. Conf., pp. 256-263, 2007.
[13] C.-L. Yeh and Y.-S. Lai, “Comprehensive dynamic analysis of wirebonding on Cu/low-K wafers,” IEEE Trans. Adv. Packag., Vol. 29, No. 2, pp. 264-270, 2006.
[14] D. Degryse, B. Vandevelde, S. Stoukatch and E. Beyne, “Mechanical behavior of BEOL structures containing lowK dielectrics during bonding process,” Proc. 5th Electron. Packag. Technol. Conf., Singapore, pp. 815-820, 2003.
[15] Luke England and Tom Jiang, “Reliability of Cu Wire Bonding to Al Metallization,” Proc. 57th Electron. Comp. Technol. Conf., pp. 1604-1613, 2007
[16] C. Suryanarayana, “Nanocrystalline materials,” Int. Mater. Rev., Vol. 40, No. 2, pp. 41-64, 1995.
[17] P. S. Branício and J.-P. Rino, “Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study,” Phys. Rev. B, Vol. 62, No. 24, pp. 16950-16955, 2000.
[18] D. T. Read, “Atomistic simulation of modulus deficit in an aggregate of metal spheres,” J. Appl. Phys., Vol. 97, pp. 013522, 2005.
[19] S. P. Ju, C. T. Wang, C. H. Chien, J. C. Huang and S. R. Jian, “The nanoindentation responses of nickel surfaces with different crystal orientations,” Mol. Simul., Vol. 33, pp. 905, 2007.
[20] J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Properties. IV. The Equations of Hydrodynamics,” J. Cham. Phys., Vol. 18, pp. 817-823, 1950.
[21] N. Metropolis, A. W. Rosenbluth, M. N. Rosenblluth, A. H. Teller, and E. Teller, “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys., Vol. 21, pp. 1087-92, 1953.
[22] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, No. 3, 1959.
[23] A. Rahman, “Correlations in the Motions of Atoms in Liquid Atom,” Phys. Rev., 136A, pp. 405-11, 1964.
[24] L. Verlet, “Computer ‘Experiments’ on Classical Fluids Ⅱ, Equilibrium Correlation Function,” Phys. Rev, Vol. 165, pp. 201~14, 1968.
[25] B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations,” J. Comput. Phys., Vol. 13, pp. 430, 1975.
[26] D. C. Rapaport, “Large-scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. Phys. Rep., Vol. 9, pp. 1-53, 1988.
[27] G. S. Grest, B. Dünweg and K. Kremer, “Vectorrized Link Cell Fortran Code for Molecular Dynamics Simulations for a Large Number of Particles,” Comput. Phys. Comm., Vol. 55(3), pp. 269-285, 1989.
[28]Kittel著,洪連輝、劉立基、魏榮君譯,固態物理學導論,高立圖書有限公司出版。
[29]William F. Smith著,劉品均、施佑蓉譯,材料科學概論,高立圖書有限公司出版。
[30] V. Rosato, M. Guillope´ and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model,” Philos. Mag. A, Vol. 59, pp. 321-336, 1989.
[31] P. Geysermans, D. Gorse, V. Pontikis, “Molecular dynamics study of the solid–liquid interface,” J. Chem. Phys., Vol. 113, Issue 15, pp.6392-6389, 2000.
[32] S. Plimpton, “Computational limits of classical molecular dynamics simulations,” J. Comput. Phys., Vol. 117, pp. 1, 1995.
[33] Dominiek Degryse, Bart Vandevelde and Eric Beyne, “Mechanical FEM Simulation of bonding process on Cu lowK wafers,” IEEE Trans. Comp. Packag. Technol., Vol. 27, Issue 4, pp. 643-650, 2004.
[34] Jian Gao, Robert Kelly, Zhijun Yang and Xin Chen, “An Investigation of Capillary Vibration during Wire Bonding Process,” Electronic Packaging Technology & High Density Packaging, pp.1-6, 2008.
[35] C.-L. Yeh, Y.-S. Lai and C.-L. Kao, “Transient simulation of wire pull test on Cu/low-K wafers,” IEEE Trans. Adv. Packag., Vol. 29, No. 3, pp. 631-638, 2006.
[36] F. P. Beer, E. R. Johnston Jr. and J. T. DeWolf, Mechanics of Materials, 4th Ed., McGraw-Hill, New York, 2006.
[37] A. G. K. Viswanath, F. Wang, X. Zhang, V. P. Ganesh and L. A. Lim, “Numerical analysis by 3D finite element wire bond simulation on Cu/low-K structures,” Proc. 7th Electron. Packag. Technol. Conf., Singapore, pp. 215-220, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code