Responsive image
博碩士論文 etd-0720110-042408 詳細資訊
Title page for etd-0720110-042408
論文名稱
Title
以有限差分頻域法分析中空兆赫波波導
FDFD Analysis of Hollow Terahertz Waveguides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-07-20
關鍵字
Keywords
低損耗、反共振反射原理、兆赫波波導、有限差分頻域法、空心管
ARROW, low loss, Terahertz Waveguides, Hollow tube, FDFD
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
兆赫波為頻率介於高頻微波和遠紅外線之間的訊號,一般最常見的兆赫波波導為金屬波導及介質波導,但是由於金屬波導的肌膚效應和介電材料的高材料吸收損耗,導致兆赫波導的效益不佳。有鑑於此,我們提出一個結構簡單的空心管狀介質波導來達到低損耗之兆赫波傳輸。在本論文中,我們利用一個擁有完美匹配層的有限差分頻域法去分析我們所設計的兆赫波波導,由模擬結果可看出,此兆赫波導是利用反共振反射原理導波。而我們更利用共振腔原理計算出介質層的共振頻率,計算的結果和有限差分頻域法的模擬數值是相當吻合的。我們並且利用有限差分頻域法,藉由改變空氣孔洞的大小,將兆赫波導的傳輸損耗由原本10-3 cm-1 (0.0043 dB/cm)降低至10-4 cm-1 (4.34×10-4 dB/cm),而利用改變介質層的厚度,我們可以設計寬頻譜兆赫波波導,由頻寬0.06THz 展延至0.13THz。

此外,我們更提出一個雙層的空心介質波導結構,我們分析其
外層介質厚度與材料對兆赫波波導侷限效應的影響。結果顯示,外層介質厚度提高將導致共振頻率點產生藍位移的現象,而介質厚度和共振頻率點位移的關係為 0.125GHz/μm。另一方面,我們發現外層介質的材料係數和共振頻率點位移的關係為指數遞減。這些計算結果顯示,我們所提出的空心介質管狀波導不僅可以有效地傳遞兆赫波,更可被應用在介質薄膜的感測器上。
Abstract
In most terahertz (THz) systems, the propagation of THz signals relies on metal or dielectric waveguides which suffer from high conductivity losses caused by the skin
effect or dielectric losses resulted from the material absorption. Due to this reason, we propose and demonstrate a simple low-loss air-core tube strucutre for THz waveguiding. The simulation method we utilized is the finite-difference frequency-domain (FDFD) method with the perfectly matched layers (PMLs). The modal indices and propagation losses of the guided core modes on the THz tube waveguide are successfully obtained. The simulation results show that the guiding mechanism of the hollow tube waveguide is based on the antiresonant reflecting
optical waveguide (ARROW) model. We also utilize a Fabry-Perot resonantor model to find out the resonance frequencies of the dielectric layer, which match well with
the results of the FDFD method. By varying the core size, it is observed that the propagation losses are reduced when the core size is increased. The propagation losses can be reduced from 10-3 cm-1 (0.0043 dB/cm) to 10-4 cm-1 (4.34×10-4 dB/cm). In addition, we can use the thin dielectric layer to provide a broad transmission band
with Δf = 0.13THz.
We also propose a novel tube THz waveguide sensor. The influence of the thickness and material of the dielectric layer 2 are investigated. We can observe that the shift of the propagation loss peak is inversely proportional to the thickness of dielectric layer 2, which can be used as a thickness sensor with the sensing sensitivity being 0.125 GHz/μm. On the other hand, the index of the dielectric layer 2 and the position of the propagation loss peak are in an exponential relationship. These properties of the tube waveguide can be applied in the dielectric-film sensing.
目次 Table of Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Numerical Method 13
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Finite-Difference Frequency-Domain Method . . . . . . . . . . . 13
2.3 FDFD Method with Perfect Matched Layers . . . . . . . . . . . . 17
2.4 Index Averaging Scheme . . . . . . . . . . . . . . . . . . . . 22
3 Numerical Results for Single-Layer Hollow THz Waveguides 27
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Air-Core THz Waveguide . . . . . . . . . . . . . . . . . . 27
3.3 Asymmetric Structure of Air-Core THz Waveguide . . . . . . . . . 31
4 Numerical Results for Double-Layer Hollow THz Waveguides 48
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Double-Layer Air-Core THz Waveguide . . . . . . . . . . . . . . 48
5 Conclusions 58
Bibliography 60
參考文獻 References
[1] Albert, R. S., and X. C. Zhang, “Terahertz Science and Technology Trends,” IEEE J. Sel. Topics Quantum Electron., vol. 14, pp. 260–269, 2008.

[2] Arnone D. D., Ciesla C. M., Corchia A., Egusa S., Pepper M., Chamberlain J. M., Bezant C., Linfield E. H., Clothier R. and Khammo “Applications of terahertz (THz) technology to medical imaging,” Terahertz Spectroscopy and Applications, SPIE 1999, vol3. 3828, pp. 209-219, 1999.

[3] Atakaramians, S., A. V. Shahraam, B. M. Fische, D. Abbott, and T. M. Monro, “Porous Fibers: A Novel Approach to Low Loss THz Waveguides,” Opt. Express, vol. 16, pp. 8845–8854, 2008.

[4] Berenger, J. P., “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994.

[5] Bingham, A. L., and D. Grischkowsky, “Terahertz Two-Dimensional High-Q Photonic Crystal Waveguide Cavities,” Opt. Lett., vol. 4, pp. 348–350, 2008.

[6] Chen, D., and H. Chen, “A Novel Low-Loss Terahertz Waveguide: Polymer Tube,” Opt. Express, vol. 18, pp. 3762–3767, 2010.

[7] David, F. P., Karen S., Edwin J. H., and Okan E., “Applications of Terahertz Spectroscopy in Biosystems,” ChemPhysChem, vol. 8, pp. 2412–2431, 2007.

[8] Fowles R. G., Introduction to Modern Optics, Second Edition, New York, Dover Pubns, 1989.

[9] Hassani, A., A. Dupuis, and M. Skorobogatiy, “Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes,” Appl. Phys. Lett., vol. 92, pp. 071101-1–071101-3, 2008a.

[10] Hassani, A., A. Dupuis, and M. Skorobogatiy, “Porous Polymer Fibers for Low-Loss Terahertz Guiding,” Opt. Express, vol. 16, pp. 6340–6351, 2008b.

[11] Haus, H. A., Wave and Fields in Optoelectronics, New Jersey, Prentics Hall, 1984.

[12] Kemp, M. C., P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security Applications of Terahertz Technology,” Conference on Terahertz for Military and Security Applications, SPIE 2003, vol. 5070, pp. 44–52, 2003.

[13] Lai, C. H., Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-Index Terahertz Pipe Waveguides,” Opt. Lett., vol. 34, pp. 3457–3459, 2009.

[14] Lai, C. H., B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal Characteristics of Antiresonant Reflecting Pipe Waveguides for Terahertz Waveguiding,” Opt. Express, vol. 18, pp. 309–322, 2010.

[15] Lee, Y. S., Principles of Terahertz Science and Technology, Boston, Springer-Verlag, 2009.

[16] Li Z., Wang J., and Gu B. “Full Band Gap in fcc and bcc Photonic Band Gaps Structure: Non-Spherical Atom,” J. Phys. Soc. Jpn., vol. 67, pp. 3288–3291, 1998.

[17] Litchinitser, N. M., A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant Reflecting Photonic Crystal Optical Waveguides,” Opt. Lett., vol. 27, pp. 1592–1594, 2002.

[18] Lu, J. Y., C. M. Chiu, C. C. Kuo, C. H. Lai, and H. C. Chang, “Terahertz Scanning Imaging with a Subwavelength Plastic Fiber,” Appl. Phys. Lett., vol., vol. 92, pp. 084102-1–084102-3, 2008a.

[19] Lu, J. Y., C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz Air-Core Microstructure Fiber,” Appl. Phys. Lett., vol. 92, pp. 064105-1–064105-3, 2008b.

[20] Mittra, R., and Ü. Pekel, “A New Look at the Perfectly Matched Layer (PML) Concept for the Reflectionless Absorption of Electromagnetic Waves,” IEEE Microwave and Guided Wave Lett., vol. 5, pp. 84–86, 1995.

[21] Mittleman, D. M., M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent Advances in Terahertz Imaging,” Appl. Phys. Lett., vol. 68, pp. 1085–1094, 1999.

[22] Rappaport, C. M., “Perfectly Matched Absorbing Boundary Conditions Based on Anisotropic Lossy Mapping of Space,” IEEE Microwave and Guided Wave Lett., vol. 5, pp. 90–92, 1995.

[23] Sakurai, Y., T. Miura, and F. Koyama, “Air Core Thickness Dependence of Propagation Loss of Slab Hollow Waveguide,” Jpn. J. Appl. Phys., vol. 43, pp. 1091–1093, 2004.

[24] Vincetti, L., “Hollow Core Photonic Band Gap Fiber for THz Applications,” Microwave Optical Technol. Lett., vol. 51, pp. 1711–1714, 2008.

[25] Vincetti, L., “Numerical Analysis of Plastic Hollow Core Microstructured Fiber for Terahertz Applications,” Optical Fiber technol., vol. 15, pp. 398–401, 2009.

[26] Walther, M., B. M. Fischer, A. Ortner, A. Bitzer, A. Thoman, and H. Helm, “Chemical Sensing and Imaging with Pulsed Terahertz Radiation,” Springer, vol. 397, pp. 1009–1017, 2010.

[27] White, T. P., R. C. McPhedran, and C. M. D. Sterke, “Resonance and Scattering in Microstructured Optical Fibers,” Opt. Lett., vol. 27, pp. 1977–1979, 2002.

[28] Xin, X., H. Altan, A. Saint, D. Matten, and R. R. Alfanob, “Terahertz Absorption Spectrum of Para and Ortho Water Vapors at Different Humidities at Room Temperature,” J. Appl. Phys., vol. 100, pp. 094905-1–094905-4, 2006.

[29] Yee, K. S., “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas and Propagation, vol. 3, pp. 302–307, 1966.

[30] Yin, D., D. W. Deamer, and H. Schmidt, “Integrated Optical Waveguides with Liquid Cores,” Appl. Phys. Lett., vol. 85, pp. 3477–3479, 2004.

[31] Yu, C. P., and H. C. Chang, “Air-Core Waveguides for Terahertz Signals,” in 2007 Integrated Photonics and Nanophotonics Research and Applications (IPNRA 2007), Utah, July 8, 2007.

[32] Yu, C. P., and H. C. Chang, “Yee-Mesh-Based Finite Difference Eigenmode Solver with PML Absorbing Boundary Conditions for Optical Waveguides and Photonic Crystal Fibers,” Opt. Express, vol. 12, pp. 6165–6177, 2004.

[33] Zhu, Z., and T. G. Brown, “Full-Vectorial Finite-Difference Analysis of Microstructured Optical Fibers,” Opt. Express, vol. 10, pp. 853–864, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.200.226
論文開放下載的時間是 校外不公開

Your IP address is 3.142.200.226
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code