Responsive image
博碩士論文 etd-0720110-121555 詳細資訊
Title page for etd-0720110-121555
論文名稱
Title
奈米碳管飽和吸收體濃度對鎖模脈衝光波形的影響之研究
The Study of Concentration Effect of Carbon Nanotube Based Saturable Absorber on Mode-Locked Pulse
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-25
繳交日期
Date of Submission
2010-07-20
關鍵字
Keywords
單壁奈米碳管、飽和吸收體、被動鎖模、鎖模
saturable absorber, mode locking, passive mode locked, single wall carbon nanotube
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
本論文研究在不同單壁奈米碳管濃度和製成薄膜厚度下,將奈米碳管之飽和吸收體置於被動鎖模環型雷射架構中,透過光學量測來探討不同奈米碳管濃度和薄膜厚度的試片之材料特性,用以了解濃度效應對鎖模脈衝之影響。首先我們經由非線性穿透量測發現,當薄膜厚度由18μm增加到265μm時,它的調制深度將由1%增加至4.5%,代表著當薄膜厚度越厚時其脈衝塑形的能力較佳。再者我們將不同摻雜濃度與厚度的薄膜置於鎖模雷射環腔中進行輸出脈衝和光譜之量測,結果顯示,當摻雜單壁奈米碳管之飽和吸收體薄膜厚度固定為8μm,濃度由0.125wt%增加到0.5wt%時,其脈衝寬度由3.43ps縮短至2.02ps;然而當摻雜濃度固定為0.125wt%,薄膜厚度由8μm增加到100μm時,其脈衝寬度由3.43ps縮減至1.85ps。
最後經由改變腔長來調變系統的群速色散值,以達到脈衝壓縮的效果,實驗中我們得到的最短脈衝為713fs,其時間-頻寬乘積為0. 345。我們利用單壁奈米碳管為材料來製作飽和吸收體,其具有低成本和製程簡單之特色,且應用範圍廣泛,使鎖模雷射在光頻量測的領域具有發展性,在超快雷射的應用上也更普及。
Abstract
We comprehensively investigated the concentration effect of dispersed single-walled carbon nanotubes (SWCNTs) in polymer films for being a saturable absorber (SA) to stabilize the mode locking performance of the Erbium-doped fiber laser (EDFL) pulse through the diagnosis of its nonlinear properties of SA. The measured modulation depth was 1 to 4.5% as the thickness increased from 18 to 265 μm. We obtained the stable pulse of the mode-locked EDFL (MLEDFL) when the full-width half-maximum (FWHM) decreased from 3.43 to 2.02 ps as the concentrations of SWCNTs SA increased from 0.125 to 0.5 wt%. At constant concentration of 0.125 wt%, the similar pulse shortening effect of the MLEDFL was also observed when the FWHM decreased from 3.43 to 1.85 ps was the thickness of SWCNTs SA increased from 8 to 100 μm.
In EDFL system, we vary group-velocity dispersion (GVD) with different cavity length to achieve optical pulse compression. We got the shortest pulsewidth was 713 fs, and the time-bandwidth product (TBP) was 0.345. An in-depth study on the stable mode-locked pulse formation employing SWCNTs SA, it is possible to fabricate the SWCNT films for use in high performance MLEDFL and utilization of many other low-cost nanodevices.
目次 Table of Contents
內容目錄
中文摘要 I
英文摘要 II
致 謝 III
內容目錄 V
圖表目錄 VIII
第一章 導論……………………………....…..…………...............1
1.1 研究目的…………………...............................................…....1
1.2 論文架構…………………………………...………………....3
第二章 被動鎖模雷射的實驗機制及原理 ………….......……… 4
2.1 鎖模原理 ……………………………………….…………....4
2.2 被動鎖模原理…………………………………………….....10
2.2.1 飽和吸收體非線性特性…………….………....………….10
2.2.2 被動鎖模之光脈衝產生機制……………...……….....…..13
2.2.3 群速色散對腔內脈衝波形之影響………..………....……15
2.3 各式飽和吸收體簡介……………………………...……......18
2.3.1 半導體飽和吸收鏡……………………....………………..18
2.3.2 克爾透鏡………………………………....……………......20
2.3.3 單壁奈米碳管飽和吸收體…………….............……….....21
第三章 單壁奈米碳管飽和吸收體製程………….....…..…..…..23
3.1 奈米碳管介紹………………..…………….……………......23
3.1.1 單壁奈米碳管結構與半導體特性……...……..........….....24
3.2 飽和吸收體中單壁奈米碳管分散之探討………....…….....29
3.2.1 奈米碳管叢聚現象………………..………......………......29
3.2.2 界面活性劑分散機制………………..………......……......30
3.3 摻雜單壁奈米碳管之飽和吸收體製備……….…..……......32
3.3.1 飽和吸收體薄膜試片製程……………………......………33
3.3.2 飽和吸收體薄膜試片厚度量測………………......………35
3.4 單壁奈米碳管飽和吸收體材料光學特性…………..….…..39
3.4.1 飽和吸收體線性吸收特性量測………………......……....39
3.4.2 飽和吸收體非線性穿透特性量測……………..................41
第四章 被動鎖模雷射實驗架構與量測…………..….....……....44
4.1 環形摻鉺光纖雷射架構……………………………...…......44
4.2 自相關儀量測原理………………………………….………48
4.3 實驗及量測結果……………………………………...…......50
4.3.1 不同試片之光譜及脈衝寬量測…………...………...........50
4.3.2脈衝壓縮之結果探討………….......………………………55
第五章 結論………….…………………………….……….........57
5.1 結論………………………………..………...........................57
5.2 未來方向……………………………….………....................58
參考文獻………………………………………............................59
參考文獻 References
1. M.E. Fermann, “Ultrafast Laser,” Marcel Dekker, Chap.3 (2003).
2. Samuli Kivistö, Tommi Hakulinen, Antti Kaskela, Brad Aitchison, David P. Brown, Albert G. Nasibulin, Esko I. Kauppinen, Antti Härkönen and Oleg G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express, 17, 2358-2363 (2009).
3. N.J. Doran, and D. Wood, “Nonlinear–optical loop mirror,” Opt. Lett., 13, 56 (1988).
4. H.A. Haus, “Mode-locking of laser,” IEEE J. Sel. Top. Quantum Electron., 6, 1173 (2000).
5. U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Opt. Lett., 15, 1377-1379 (1990).
6. Y.C. Chen, N.R. Raravikar, L.S. Schadler, P.M. Ajayan, Y.P. Zaho, T.M. Liu, G.C. Wang, and X.C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett., 81, 975 (2002).
7. S.Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lightwave Tech., 22, 51 (2004).
8. T.R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express, 13, 8025 (2005).
9. K.H. Fong, K. Kikuchi, C.S. Goh, S.Y. Set, R. Grange, M. Haiml, A. Schlatter, and U. Keller, “Solid-state Er:Yb:glass mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett., 32, 38 (2007).
10. A. Schmidt, S. River, G. Steinmeyer, J.H. Yim, W.B. Cho, S. Lee, F. Rotermund, M.C. Pujol, X. Mateos, M. Aguilo, F. Diaz, V. Petrov, and U. Griebner, “Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1μm,” Opt. Lett., 33, 729 (2008).
11. Claude Rullière, “Femtosecond Laser Pulses: Principles and Experiments,” Springer, Chap.1 and Chap.3 (1998).
12. D.J. Derickson, P.A. Morton, and J.E. Bowers, “Comparison of timing jitter in external and monolithic cavity mode-locked semiconductor lasers,” Appl. Phys. Lett., 59, 23 (1991).
13. Sze Y. Set, Hiroshi Yaguchi, Yuichi Tanaka, and Mark Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes, ” IEEE J. Quantum Electron, 10, 1 (2004).
14. H.A. Haus, “A Theory of Forced Mode Locking”, IEEE Journal of Quantum Electronics, QE-11, 323 - 330 (1975).
15. Franz X. Kaertner, “Mode-locked Laser Theory,” physics.gatech.edu, Chap.1 (2006).
16. Govind P. Agrawal, “Nonlinear Fiber Optical,” Springer Berlin, Chap.3 (2000).
17. Gerd Keiser, “Optical Fiber Communication,” McGraw-Hill Companies, Chap.3 (2000).
18. H.A. Haus, J.G. Fujimoto, and E.P. Ippen, “Structures for additive pulse mode locking, ” J. Opt. Soc. Am. B, 8, 2068 (1991).
19. 黃資順, “飽和吸收體摻雜奈米碳管被動鎖模雷射之研究,” 國立中山大學碩士論文 (2009).
20. H.A. Haus, “Theory of Mode Locking with a Slow Saturable Absorber,” IEEE J. Quantum Electron., 11, 736 - 746 (1975).
21. G.H.C. New: “Pulse evolution in mode-locked quasicontinuous lasers, ” IEEE J. Quantum Electron., 10, 115-124 (1974).
22. T. Brabec, C. Spielmann, P.F. Curley, F. Krausz, “Kerr lens mode locking,” Optics Letters, 17, 1292–1294 (1992).
23. H.A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys., 46, 3049 -3058 (1975).
24. M.W. Phillips, A.I. Ferquson, D.C. Hanna, “Frequency-modulation mode locking of a Nd^ 3+-doped fiber laser,” Opt. Lett., 14, 219 (1989).
25. 林哲葳, “離子液體分散奈米碳管之塑膠複合材料電磁屏蔽效應”, 國立中山大學碩士論文 (2008).
26. N. Onodera et. al., “Frequency multiplication in actively mode locked semiconductor lasers,” Appl. Phys. Lett., 62, 1329 (1993).
27. S. lijima, “Helical Microtubeles of Graphitic carbon,” Nature, 354, 56 (1991).
28. 成會明, “奈米碳管”, 五南出版社 (2004).
29. H. Kataura, Synthetic Metals, “Optical properties of single-wall carbon nanotubes,” Acc. Chem. Res., 103, 2555-2558 (1999).
30. A. Ugawa, A.G. Rinzler, and D.B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B, 60, R11305 (1999).
31. M.E. Itkis, S. Niyogi, M.E. Meng, M.A. Hamon, H. Hu, and R.C. Haddon, “Chemistry of single-walled carbon nanotubes,” Nano Lett., 2, 155 (2002).
32. H. Kataura , “Diameter control of single-walled carbon nanotubes,” Carbon, 38, 1691-1697 (2000).
33. 張家銘, “多層壁奈米碳管複合材料電磁屏蔽之研究,” 國立中山大學博士論文 (2008).
34. http://www.chemicalbook.com/ChemicalProductProperty_CN_CB4852054.htm
35. J.C. Chiu, Y.F. Lan, C.M. Chang, X.Z. Chen, C.Y. Yeh,C.K. Lee, G.R. Lin, J.J. Lin, and W.H. Cheng, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse,” Opt. Express, 18, 3592 (2010).
36. Femtochrome Research, Inc., http://www.femtochrome.com/.
37. 陳哲聰, “利用扭曲量子井布拉格飽和吸收鏡被動鎖模鈦藍寶石雷射特性之研究,” 國立交通大學碩士論文 (1999).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.130.31
論文開放下載的時間是 校外不公開

Your IP address is 3.145.130.31
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code