Responsive image
博碩士論文 etd-0720110-151321 詳細資訊
Title page for etd-0720110-151321
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於環境樣品中鉈及食用油中砷物種分析之應用
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-09
繳交日期
Date of Submission
2010-07-20
關鍵字
Keywords
液相層析、食用油、環境樣品、砷、鉈、感應耦合電漿質譜儀、物種分析
liquid chromatography, environmental sample, arsenic, edible oil, inductively coupled plasma mass spectrometry, thallium
統計
Statistics
本論文已被瀏覽 5644 次,被下載 2180
The thesis/dissertation has been browsed 5644 times, has been downloaded 2180 times.
中文摘要
近年來,物種分析的重要性逐漸受到重視,由於元素的化學型態與其毒性程度有極大的關係,對環境的影響也不同。因此相較於總量的測定,不同物種的定量更具代表性、更能提供重要的生物資訊。利用液相層析(Liquid Chromatography,LC)將不同物種分離後,再進入感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometry,ICP-MS)進行偵測,即可獲得物種間的定量資訊。由於ICP-MS靈敏度高、偵測極限低、線性範圍廣以及同位素分析能力等優點,使得液相層析結合感應耦合電漿質譜儀成為環境或是生物樣品中物種分析工具最佳選擇之一。
第一部分研究是以液相層析結合感應耦合電漿質譜儀對水樣、樹葉樣品中Tl(I)及Tl(III)進行物種分析,並觀察樹葉樣品與同區域土壤樣品中鉈含量的分布關係。層析系統中,利用離子對逆相層析機制將 Tl(I)、Tl(III)分離,使用C-8管柱,並以Tetra-n-butylammonium phosphate(TBAP)做為離子對試劑,Diethylenetriamine-pentaacetic acid(DTPA)為螯合試劑。分離條件最適化探討後,可於3分鐘內將Tl兩物種快速分離,且偵測極限皆低至3 pg mL-1。以此開發之系統對水樣SRM進行分析,與標準參考值相當吻合;並分析中山大學旁表面水、美術館湖水,其回收率介於96-102%間,證明此系統的可行性。樹葉樣品則選擇釋迦葉為萃取對象,利用超音波振盪三十分鐘的方式,此方式為一簡便、快速之萃取方法,且萃取效率可達99%以上。實驗結果顯示存在樹葉樣品中的皆是較穩定但毒性較高的 Tl(I)。另外也觀察到同區域取得的樹葉與土壤中之鉈含量彼此具有正相關性。
第二部分則以離子層析結合感應耦合電漿質譜儀對食用油中砷物種的分析。使用陰離子交換管柱,以梯度沖提的方式同時分離六個砷物種,包含Arsenite(As(III))、Arsenate(As(V))、Monomethylarsonic acid(MMA)、Dimethylarsinic acid(DMA)、Arsenobetaine(AsB)及Arsenocholine(AsC),其偵測極限分別為0.024、0.013、0.010、0.008、0.009、0.010 ng mL-1,r2均為0.9995以上,訊號面積RSD除了As(III)較高之外,其餘皆在3.5%以下(n = 5)。分離條件最適化後,六種砷物種可於7分鐘內完成分離。在實驗中,食用油樣品之總量測定不同於傳統微波消化方式,本實驗是利用乳化法(Emulsion)直接進樣,不僅降低前處理的複雜性,更減少了消化過程中可能輸入的污染。食用油萃取方法則是以0.5% (v/v) HNO3配置於80% (v/v) MeOH之溶液作為萃取試劑,以微波萃取(80℃)2小時後,以減壓濃縮機(Rotary Evaporator)於70℃水浴下,將部分甲醇揮發掉。食用油樣品萃取前添加適量濃度之六個砷物種標準品,並於萃取後,以HPLC-ICP-MS定量,物種回收率在93-105%間,表示此萃取方法的可行性。實驗中,並取得三種來自不同店家使用過的炸油進行物種分析,且比較使用前及使用後的砷含量。實驗結果顯示使用前後之食用油樣品其砷含量有所不同,且不同來源的食用油樣品其砷物種的分布也不同。
Abstract
none
目次 Table of Contents
摘要......................I
謝誌.....................IV
目錄.....................V
圖目錄.....................VIII
表目錄.....................X

第一章 離子對逆相層析法結合感應耦合電漿質譜儀於環境樣品中鉈物種分析之應用
壹、前言.....................1
貳、實驗部分.....................4
一、儀器裝置.....................4
二、試劑藥品和溶液的配製.....................5
參、實驗過程.....................9
一. 液相層析分離條件最適化.....................9
二. 校正曲線、偵測極限的估計.....................11
三. 再現性.....................11
四. 環境樣品分析.....................11
肆、結果與討論.....................16
一、液相層析條件最適化探討.....................16
二、再現性.....................27
三、校正曲線與偵測極限的估計.....................27
四、環境樣品分析.....................32
伍、結論.....................45
陸、參考文獻.....................46
第二章 離子層析法結合感應耦合電漿質譜儀於食用油中
砷物種分析之應用
壹、前言.....................46
貳、實驗部分.....................49
一、儀器裝置.....................49
二、試劑藥品和溶液的配製.....................50
參、實驗過程.....................52
一. 液相層析分離條件最適化.....................52
二. 校正曲線、偵測極限的估計.....................53
三. 再現性.....................53
四、食用油樣品分析.....................56
肆、結果與討論.....................60
一、液相層析條件最適化探討.....................60
二、再現性.....................71
三、校正曲線與偵測極限的估計.....................71
四、萃取條件最適化.....................75
五、食用油樣品分析.....................79
伍、結論.....................91
陸、參考文獻 ......................................... 92

第一章
圖1-1 HPLC-ICP-MS系統圖.....................6
圖1-2 TBAP及DTPA之結構式.....................8
圖1-3 離子對作用機制示意圖.....................10
圖1-4 植物樹葉樣品萃取流程圖.....................13
圖1-5 物種分析實驗流程圖.....................15
圖1-6 TBAP濃度對層析分離的影響.....................17
圖1-7 DTPA濃度對層析分離的影響.....................19
圖1-8 動相pH值對層析分離的影響.....................20
圖1-9 動相pH值對分析物滯留時間關係圖.....................21
圖1-10 動相中甲醇濃度對層析分離的影響.....................23
圖1-11 動相流速對層析分離的影響.....................25
圖1-12 水樣標準參考樣品之層析圖.....................33
圖1-13 中山大學旁滲出水之層析圖.....................36
圖1-14 美術館湖水之層析圖.....................37
圖1-15 中山大學旁水泥廠釋迦葉之層析圖.....................40
圖1-16 台東市區釋迦葉之層析圖.....................41
第二章
圖2-1 砷物種於各pH值環境下之化學式及pKa值.....................57
圖2-2 各物種之結構式.....................58
圖2-3 食用油乳化液樣品製備流程圖.....................61
圖2-4 食用油樣品萃取流程圖.....................63
圖2-5 改變動相pH值對層析分離的影響.....................65
圖2-6 動相pH值對分析物滯留時間之關係圖.....................66
圖2-7 改變動相A之碳酸銨濃度對層析分離的影響..............68
圖2-8 改變動相甲醇濃度對層析分離的影響.....................70
圖2-9 改變動相切換時間對層析分離的影響.....................73
圖2-10 改變動相ramp時間對層析分離的影響.....................74
圖2-11 不同萃取試劑於食用油中砷萃取量之相對訊號...........82
圖2-12 不同萃取時間於食用油中砷萃取量之相對訊號............83
圖2-13 不同萃取溫度於食用油中砷萃取量之相對訊號............85
圖2-14 萃取試劑為0.5% (v/v) HNO3配置於80% (v/v) MeOH中,維持不同萃取時間對於油中砷萃取量之相對訊號.....................93
圖2-15 Oil#1萃取後所得砷物種之層析圖.....................94
圖2-16 Oil#2萃取後所得砷物種之層析圖.....................95
圖2-17 Oil#3萃取後所得砷物種之層析圖.....................96
第一章
表1-1 動相流速對分析物訊號之影響 .....................26
表1-2 LC-ICP-MS 系統操作條件.....................28
表1-3 鉈物種的滯留時間及分析訊號之再現性.....................29
表1-4 鉈物種之校正曲線及偵測極限..................... 30
表1-5 偵測極限之比較.....................31
表1-6 以LC-ICP-MS測定SRM水樣中鉈物種含量.....................34
表1-7 以LC-ICP-MS測定水樣中鉈物種含量.....................38
表1-8 以LC-ICP-MS測定釋迦葉中鉈物種含量.....................42
表1-9 同一區域樹葉及土壤樣品鉈總量比較.....................44
第二章
表2-1 動相A碳酸銨濃度對分析物訊號之影響.....................69
表2-2 動相中甲醇濃度對分析物訊號之影響.....................72
表2-3 LC-ICP-MS系統操作條件.....................76
表2-4 六種砷物種的滯留時間及分析訊號之再現性.................78
表2-5 以LC-ICP-MS測定砷物種之校正曲線及偵測極限..........79
表2-6 以LC-ICP-MS測定砷物種之偵測極限比較.....................80
表2-7 以乳化方式對油品中的As定總量.....................87
表2-8 食用油樣品砷物種萃取量與總量之比較.....................88
表2-9 萃取後殘餘的油樣品砷含量與總量比較.....................89
表2-10 食用油樣品砷物種萃取量與總量之比較.....................92
表2-11 以LC-ICP-MS測定油中砷物種之含量.....................98
參考文獻 References
1. Kazantzis, G., Thallium in the environment and health effects, Environ. Geochem. Health, 2000, 22 (4), 275-280.
2. Cheam, V., Thallium contamination of water in Canada, Water Qual. Res. J. Can., 2001, 36 (4), 851-878.
3. Meeravali, N. N.; Jiang, S. J., Ultra-trace speciation analysis of thallium in environmental water samples by inductively coupled plasma mass spectrometry after a novel sequential mixed-micelle cloud point extraction, J. Anal. At. Spectrom., 2008, 23 (4), 555-560.
4. Peter, A. L. J.; Viraraghavan, T., Thallium: a review of public health and environmental concerns, Environ. Int., 2005, 31 (4), 493-501.
5. 劉貞綾, "液相層析結合感應耦合電漿質譜儀於鉈物種分析之應用",
中山大學化學系碩士論文, 民國九十八年一月.
6. Lin, T. S.; Nriagu, J. O., Thallium speciation in river waters with
Chelex-100 resin, Anal. Chim. Acta, 1999, 395 (3), 301-307.
7. Nolan, A.; Schaumloffel, D.; Lombi, E.; Ouerdane, L.; Lobinski, R.; McLaughlin, M., Determination of Tl-(I) and Tl-(III) by IC-ICP-MS and application to Tl speciation analysis in the Tl hyperaccumulator plant Iberis intermedia, J. Anal. At. Spectrom., 2004, 19 (6), 757-761.
8. Ivanova, E.; Yan, X. P.; vanMol, W.; Adams, F., Determination of thallium in river sediment by flow injection on-line sorption preconcentration in a knotted reactor coupled with electrothermal atomic absorption spectrometry, Analyst, 1997, 122 (7), 667-671.
9. Vale, M. G. R.; Silva, M. M.; Welz, B.; Nowka, R., Control of spectral and non-spectral interferences in the determination of thallium in river and marine sediments using solid sampling electrothermal atomic absorption spectrometry, J. Anal. At. Spectrom., 2002, 17 (1), 38-45.
10. Scheckel, K. G.; Lombi, E.; Rock, S. A.; McLaughlin, M. J., In vivo synchrotron study of thallium speciation and compartmentation in lberis intermedia, Environ. Sci. Technol., 2004, 38 (19), 5095-5100.
11. Wei, M. T.; Jiang, S. J., Determination of thallium in sea-water by flow
injection hydride generation isotope dilution inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1999, 14 (8), 1177-1181.
12. Zen, J. M.; Wu, J. W., Square-wave voltammetric stripping analysis of thallium(III) at a poly(4-vinylpyridine)/mercury film electrode, Electroanal., 1997, 9 (4), 302-306.
13. Lu, T. H.; Yang, H. Y.; Sun, I. W., Square-wave anodic stripping voltammetric determination of thallium(I) at a Nafion mercury film modified electrode, Talanta, 1999, 49 (1), 59-68.
14. Krasnodebska-Ostrega, B.; Paldyna, J.; Golimowski, J., Determination of thallium at a silver-gold alloy electrode by voltammetric methods in plant material and bottom sediment containing Cd and Pb, Electroanal., 2007, 19 (5), 620-622.
15. Krasnodebska-Ostrega, B.; Asztemborska, M.; Golimowski, J.; Strusinska, K., Determination of thallium forms in plant extracts by anion exchange chromatography with inductively coupled plasma mass spectrometry detection (IC-ICP-MS), J. Anal. At. Spectrom., 2008, 23 (12), 1632-1635.
16. Coetzee, P. P.; Fischer, J. L.; Hu, M., Simultaneous separation and determination of Tl(I) and Tl(III) by IC-ICP-OES and IC-ICP-MS, Water Sa, 2003, 29 (1), 17-22.
17. Lin, T. S.; Nriagu, J., Thallium speciation in the Great Lakes, Environ. Sci. Technol., 1999, 33 (19), 3394-3397.
18. Nielsen, S. G.; Rehkamper, M.; Baker, J.; Halliday, A. N., The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS, Chem. Geol., 2004, 204 (1-2), 109-124.
19. 王若芸, "液相層析結合感應偶合電漿質譜儀於銻、鉈、砷與析分析之應用", 中山大學化學系碩士論文, 民國九十五年七月.
20. 劉忠昌, "動力反應室感應偶合電漿質譜儀於土壤及沉積土中鍺、砷及硒元素分析之應用", 中山大學化學系碩士論文, 民國九十二年六月.
21. Inczedy, J., Analytical Application of Complex Equilibria., Wiley, New York, 1976, 137–140.
22. Revanasiddappa, H. D.; Kumar, T. N. K., A simple and rapid spectrophotometric determination of thallium(III) with trifluoperazine hydrochloride, Anal. Sci., 2002, 18 (10), 1131-1135.
23. Mestek, O.; Koplik, R.; Fingerova, H.; Suchanek, M., Determination of thallium in environmental samples by inductively coupled plasma mass spectrometry: comparison and validation of isotope dilution and external calibration methods, J. Anal. At. Spectrom., 2000, 15 (4), 403-407.
24. 張寶貴, 張忠, 胡靜, 秦朝建, "鉈、鉈中毒及鉈在生態系中遷移途徑", 地球與環境, 2009, 37 131-135.
1. 陳志明、謝佳穎, "食用油與食品中重金屬的檢測", 科技新知, 第十三期.
2. http://www.shadowgov.tw/31515_0_is.htm.
3. Brown, K. G.; Ross, G. L., Arsenic, drinking water, and health: A position paper of the American Council on Science and Health, Regul. Toxicol. Pharm., 2002, 36 (2), 162-174.
4. Polak, M.; Opoka, R.; Cartwright, I. L., Response of fluctuating asymmetry to arsenic toxicity: support for the developmental selection hypothesis, Environ. Pollut., 2002, 118 (1), 19-28.
5. Abernathy, C. O.; Thomas, D. J.; Calderon, R. L., Health effects and risk assessment of arsenic, J. Nutr., 2003, 133 (5), 1536S-1538S.
6. Tseng, C. H., Blackfoot disease and arsenic: A never-ending story, J. Environ. Sci. Health Part. C-Environ. Carcinog. Ecotoxicol. Rev., 2005, 23 (1), 55-74.
7. Cao, X.; Hao, C. L.; Wang, G.; Yang, H. H.; Chen, D. Y.; Wang, X. R., Sequential extraction combined with HPLC-ICP-MS for As speciation in dry seafood products, Food Chem., 2009, 113 (2), 720-726.
8. 劉鎮宗, 科學月刊, 1995, 26 (2), 134-140.
9. Moreda-Pineiro, A.; Pena-Vazquez, E.; Hermelo-Herbello, P.; Bermejo-Barrera, P.; Moreda-Pineiro, J.; Alonso-Rodriguez, E.; Muniategui-Lorenzo, S.; Lopez-Mahia, P.; Prada-Rodriguez, D., Matrix solid-phase dispersion as a sample pretreatment for the speciation of arsenic in seafood products, Anal. Chem., 2008, 80 (23), 9272-9278.
10. Dufailly, V.; Guerin, T.; Noel, L.; Fremy, J. M.; Beauchemin, D., A simple method for the speciation analysis of bio-accessible arsenic in seafood using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2008, 23 (9), 1263-1268.
11. Dufailly, V.; Noel, L.; Fremy, J. M.; Beauchemin, D.; Guerin, T., Optimisation by experimental design of an IEC/ICP-MS speciation method for arsenic in seafood following microwave assisted extraction, J. Anal. At. Spectrom., 2007, 22 (9), 1168-1173.
12. Wang, R. Y.; Hsu, Y. L.; Chang, L. F.; Jiang, S. J., Speciation analysis of arsenic and selenium compounds in environmental and biological samples by ion chromatography-inductively coupled plasma dynamic reaction cell mass spectrometer, Anal. Chim. Acta, 2007, 590 (2), 239-244.
13. Afton, S.; Kubachka, K.; Catron, B.; Caruso, J. A., Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection Applications to river water, plant extract and urine matrices, J. Chromatogr. A, 2008, 1208 (1-2), 156-163.
14. Mir, K. A.; Rutter, A.; Koch, I.; Smith, P.; Reimer, K. J.; Poland, J. S., Extraction and speciation of arsenic in plants grown on arsenic contaminated soils, Talanta, 2007, 72 (4), 1507-1518.
15. Suner, M. A.; Devesa, V.; Munoz, O.; Velez, D.; Montoro, R., Application of column switching in high-performance liquid chromatography with on-line thermo-oxidation and detection by HG-AAS and HG-AFS for the analysis of organoarsenical species in seafood samples, J. Anal. At. Spectrom., 2001, 16 (4), 390-397.
16. Van Holderbeke, M.; Zhao, Y. N.; Vanhaecke, F.; Moens, L.; Dams, R.; Sandra, P., Speciation of six arsenic compounds using capillary electrophoresis inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, 1999, 14 (2), 229-234.
17. Rubio, R.; Ruiz-Chancho, M. J.; Lopez-Sanchez, J. F., Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants, Trends Anal. Chem, 2010, 29 (1), 53-69.
18. Chang, Y. T.; Jiang, S. J., Determination of As, Cd and Hg in emulsified vegetable oil by flow injection chemical vapour generation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2008, 23 (1), 140-144.
19. Kohlmeyer, U.; Jakubik, S.; Kuballa, J.; Jantzen, E., Determination of arsenic species in fish oil after acid digestion, Microchim. Acta, 2005, 151 (3-4), 249-255.
20. Kannamkumarath, S. S.; Wrobel, K.; Caruso, J. A., Speciation of arsenic in different types of nuts by ion chromatography-inductively coupled plasma mass spectrometry, J. Agric. Food. Chem., 2004, 52 (6), 1458-1463.
21. 王若芸, " 液相層析結合感應偶合電漿質譜儀於銻、鉈、砷與硒分析之應用 ", 中山大學化學系碩士論文, 民國九十五年七月.
22. Zheng, J.; Goessler, W.; Kosmus, W., The chromatographic behavior of arsenic compounds on anion exchange columns with binary organic acids as mobile phases, Chromatographia, 1998, 47 (5-6), 257-263.
23. Butler, J. A.; Whanger, P. D.; Tripp, M. J., Blood selenium and glutathione-peroxidase activity in pregnant-women - comparative assays in primates and other animals, Amer. J. Clin. Nutr., 1982, 36 (1), 15-23.
24. Wangkarn, S.; Pergantis, S. A., High-speed separation of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2000, 15 (6), 627-633.
25. Murillo, M.; Benzo, Z.; Marcano, E.; Gomez, C.; Garaboto, A.; Marin, C., Determination of copper, iron and nickel in edible oils using emulsified solutions by ICP-AES, J. Anal. At. Spectrom., 1999, 14 (5), 815-820.
26. Castillo, J. R.; Jimenez, M. S.; Ebdon, L., Semiquantitative simultaneous determination of metals in olive oil using direct emulsion nebulization, J. Anal. At. Spectrom., 1999, 14 (9), 1515-1518.
27. Lavilla, I.; Cabaleiro, N.; Costas, M.; de la Calle, I.; Bendicho, C., Ultrasound-assisted emulsification of cosmetic samples prior to elemental analysis by different atomic spectrometric techniques, Talanta, 2009, 80 (1), 109-116.
28. Jimenez, M. S.; Velarte, R.; Castillo, J. R., On-line emulsions of olive oil samples and ICP-MS multi-elemental determination, J. Anal. At. Spectrom., 2003, 18 (9), 1154-1162.
29. 張尤子, "泥漿進樣及乳化法進樣結合蒸氣生成感應偶合電漿質譜儀於葉子及食用油中砷、銻、鉍、汞及鎘之分析應用", 中山大學化學系碩士論文, 民國九十六年六月.
30. Foster, S.; Maher, W.; Krikowa, F.; Apte, S., A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues, Talanta, 2007, 71 (2), 537-549.
31. Yeh, C. F.; Jiang, S. J., Speciation of arsenic compounds in fish and oyster tissues by capillary electrophoresis-inductively coupled plasma-mass spectrometry, Electrophoresis, 2005, 26 (7-8), 1615-1621.
32. Raber, G.; Raml, R.; Goessler, W.; Francesconi, K. A., Quantitative speciation of arsenic compounds when using organic solvent gradients in HPLC-ICPMS, J. Anal. At. Spectrom., 2010, 25 (4), 570-576.
33. Larsen, E. H.; Sturup, S., Carbon-enhanced inductively-coupled plasma-mass spectrometric detection of arsenic and selenium and its application to arsenic speciation, J. Anal. At. Spectrom., 1994, 9 (10), 1099-1105.
34. Vilano, M.; Padro, A.; Rubio, R., Coupled techniques based on liquid chromatography and atomic fluorescence detection for arsenic speciation, Anal. Chim. Acta, 2000, 411 (1-2), 71-79.
35. Ackley, K. L.; B'Hymer, C.; Sutton, K. L.; Caruso, J. A., Speciation of arsenic in fish tissue using microwave-assisted extraction followed by HPLC-ICP-MS, J. Anal. At. Spectrom., 1999, 14 (5), 845-850.
36. Brisbin, J. A.; B'Hymer, C.; Caruso, J. A., A gradient anion exchange chromatographic method for the speciation of arsenic in lobster tissue extracts, Talanta, 2002, 58 (1), 133-145.
37. Tsalev, D. L.; Sperling, M.; Welz, B., Speciation determination of arsenic in urine by high-performance liquid chromatography hydride generation atomic absorption spectrometry with on-line ultraviolet photooxidation, Analyst, 1998, 123 (8), 1703-1710.
38. Tseng, W. C.; Cheng, G. W.; Lee, C. F.; Wu, H. L.; Huang, Y. L., On-line coupling of microdialysis sampling with high performance liquid chromatography and hydride generation atomic absorption spectrometry for continuous in vivo monitoring of arsenic species in the blood of living rabbits, Anal. Chim. Acta, 2005, 543 (1-2), 38-45.
39. Coelho, N. M. M.; Parrilla, C. N.; Cervera, M. L.; Pastor, A.; de la Guardia, A., High performance liquid chromatography - atomic fluorescence spectrometric determination of arsenic species in beer samples, Anal. Chim. Acta, 2003, 482 (1), 73-80.
40. Wei, X. Y.; Brockhoff-Schwegel, C. A.; Creed, J. T., Application of sample pre-oxidation of arsenite in human urine prior to speciation via on-line photo-oxidation with membrane hydride generation and ICP-MS detection, Analyst, 2000, 125 (6), 1215-1220.
41. Ritsema, R.; Dukan, L.; Navarro, T. R. I.; van Leeuwen, W.; Oliveira, N.; Wolfs, P.; Lebret, E., Speciation of arsenic compounds in urine by LC-ICP MS, Appl. Organomet. Chem., 1998, 12 (8-9), 591-599.
42. Vela, N. P.; Heitkemper, D. T.; Stewart, K. R., Arsenic extraction and speciation in carrots using accelerated solvent extraction, liquid chromatography and plasma mass spectrometry, Analyst, 2001, 126 (7), 1011-1017.
43.http://www.fda.gov.tw/people_laws_list.aspx?pages=1&keyword=&classifysn=62.
44. 張磊, 不同型態砷化合物穩定性研究及砷型態分析中樣品前處理技術, 國外醫學衛生學分冊, 2007, 第34卷 (第4期), 224-238.
45. McSheehy, S.; Mester, Z., Arsenic speciation in marine certified reference materials - Part 1. Identification of water-soluble arsenic species using multidimensional liquid chromatography combined with inductively coupled plasma, electrospray and electrospray high-field asymmetric waveform ion mobility spectrometry with mass spectrometric detection, J. Anal. At. Spectrom., 2004, 19 (3), 373-380.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code