Responsive image
博碩士論文 etd-0720110-160215 詳細資訊
Title page for etd-0720110-160215
論文名稱
Title
固化過程中固液界面所產生氣泡之動態行為
Bubble Behavior on a Solidification Front
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
33
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-30
繳交日期
Date of Submission
2010-07-20
關鍵字
Keywords
表面張力、相位場
Phase-field, surface tension
統計
Statistics
本論文已被瀏覽 5660 次,被下載 1624
The thesis/dissertation has been browsed 5660 times, has been downloaded 1624 times.
中文摘要
本研究採用相位場(Phase-field)方法模擬氣泡在固化過程的固液界面之行為。流場以質量、動量、能量等方程式模擬氣泡之變化。此模式考慮固、液、氣三相共存,不同之流體在密度和黏滯係數,外力則考量表面張力和重力的作用。此外,界面之質量交換也不可忽略。結果顯示固化速度快時產生氣孔,固化速度慢時氣泡漂離
Abstract
The study uses the Phase-field method to simulate the bubble behavior of liquid-solid interface in the solidification.The flow use the mass equation,momentum equation,and energy equation for simulating the variation of bubble. This pattern considers that three-phase of solid, liquid,and gas coexist with the different density and viscosity coefficient,and the external force considers surface tension and the gravity force. In addition,the mass transfer also can’t neglect around interface. The result discuss the production of pore when the velocity of solidification is fast,but bubble leaves when the velocity of solidification is slow.
目次 Table of Contents
謝誌 Ⅰ
目錄 Ⅱ
圖目錄 Ⅳ
符號說明 V

中文摘要 VII

英文摘要 VIII

第一章 緒論 1
1.1 前言與文獻回顧 1
1.2 相位場模組(PFM) 2
1.3 研究內容簡介 3
1.4 本文架構 3
第二章 系統模型之假設與理論分析 4
2.1 理論模型與假設 4
2.2 相位場模組 5
2.3 動量&質量守衡方程式 7
2.4 能量守衡方程式 9
2.5 邊界條件 10
第三章 結果與討論 12
3.1 溫度梯度大時的結果 12
3.2 溫度梯度小時的結果 16
第四章 結論 20
參考文獻 21
參考文獻 References
[1]Tanai L. Marin,”Solidification of a Liquid Metal Droplet Impinging on a Cold Surface,” Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston
[2]V. R. Voller and C. Prakash,”A Fixed grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems,” Journal of Heat and Mass Transfer, 30(8), 1709-1719(1987)
[3]Takada, N.,Misawa, M., and Tomiyama, A.,2005,”A Phase-Field Method for Interface-Tracking Simulation of Two-Phase Flows” ASME Fluids Engineering
[4]Inamuro, T., Ogata, T., Tajima, S., and Konishi, N., 2004, “A Lattice Boltzmann Method for Incompressible Two-Phase Flows with Large Density Differences,” J. Comput. Phys., 198, pp.628-644.
[5]Takada, N., Tomiyama, A., and Hosokawa, S., 2003, ”Numerical Simulation of Drops in a Shear Flow by a Lattice-Boltzmann Binary Fluid Model,” Comput. Fluid Dyn. J., 12, pp.475-481.
[6]Jacqmin, D., 1999, “Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling,” J. Comput. Phys., 155, pp.96-127.
[7]Jamet, D., Lebaique, O., Coutris, N. and Delhaye, J.M., 2001, “The Second Gradient Method for the Direct Numerical Simulation of Liquid-Vapor Flows with Phase Change,” J. Comput. Phys., 169, pp.624-651.
[8]Seta, T., and Kono, K.., 2004, “Thermal Lattice Boltzmann Method for Liquid-Gas Two-Phase Flows in Two Dimensions," JSME Int. J. Ser.B, 47, pp.572-583.
[9]Bi, Z., and Sekerka, R.F., 1998, ”Phase-Field Model for Solidification of a Binary Alloy,”Physica,A 261, pp.95-106.
[10]Morita,H., Kawakatsu,T., and Doi,M., 2001, “Dynamic Density Functional Study on the Structure of Thin Polymer Blend Films with a Free Surface,” Macromolecules, 34, pp.8777-8783.
[11]Cahn, J.W., and Hilliard, J.E., 1958, ”Free Energy of a Nonuniform System. I. Interfacial Free Energy,” J. Chem. Phys., 28, pp.258- 267.
[12]Brackbill, J.U., Kothe, D.B. and Zemach, C., 1992, “A Continuum Method for Modeling Surface Tension,” J. Comput. Phys., 100, pp.335-354.
[13]Kunugi,T., and Satake,S., 1999, “Direct Numerical Simulation of Turbulent Free-Surface Flow,” Turbulence and Shear Flow Phenomena-1, pp.621-626, Begell House, New York.
[14]Yabe, T., Xiao, F., and Utsumi, T., 2001, “The Constraind Interpolation Profile Method for Multiphase Analysis,” J.Comput. Phys., 169, pp.556-593.
[15]Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., and Jan, Y.-J., 2001, “A Front-Tracking Method for the Computations of Multiphase Flow,” J. Comput. Phys., 169, pp.708-759.
[16]Chang, Y.C., Hou, T.Y., Merriman, B., and Osher, S., 1996, “A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows,” J. Comput. Phys., 124, pp.449-464.
[17]Hirt, C.W. and Nichols, B.D., 1981, ”Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys., 39,pp.201-225.
[18]Swift, M. R., Orlandini, E., Osborn W. R., and Yeomans, J. M., 1996, “Lattice Bolztammn Simulations of Liquid-Gas and Binary Fluid Systems,” Phys.Rev., E 54, pp.5041-5052.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code