Responsive image
博碩士論文 etd-0720110-163250 詳細資訊
Title page for etd-0720110-163250
論文名稱
Title
泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於藥錠 及中草藥中微量元素分析之應用
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-09
繳交日期
Date of Submission
2010-07-20
關鍵字
Keywords
感應耦合電漿質譜儀、藥錠、中草藥、微量元素、鈀、鎘、鉑、汞、鉛、砷、鉻、動態反應室、鉬、電熱式揮發
Pd, As, tablet, ETV, Mo, ICP-MS, Chinese herbal medicine, DRC, Cr, trace elements, Pb, Cd, Pt, Hg
統計
Statistics
本論文已被瀏覽 5660 次,被下載 1707
The thesis/dissertation has been browsed 5660 times, has been downloaded 1707 times.
中文摘要
超音波泥漿取樣法(Ultrasonic Slurry Sampling,USS)是一種將固體樣品導入電熱式揮發器(Electrothermal Vaporizer,ETV)的方法,已廣泛且成功地使用在感應耦合電漿質譜儀(ICP-MS)上。相較於傳統固體樣品需經強酸消化再進行分析,泥漿取樣法的直接取樣分析有簡化樣品前處理的繁雜過程,避免於樣品前處理過程中導入污染物及降低易揮發物種在消化時之損失等優點;再配合 ETV 樣品輸入裝置,其相較於傳統氣動式霧化器而言,有靈敏度較佳、偵測極限較低、所需樣品量少及可直接固體進樣等優點。此外,由於在 ICP-MS 中常會因光譜干擾而造成定量上準確性不佳,因此,可配合動態反應室(Dynamic Reaction Cell,DRC)來減輕在定量時光譜干擾所造成的影響。

本研究是以電熱式揮發感應耦合電漿質譜儀(ETV-ICP-MS)偵測藥錠及中草藥中之微量元素。研究分為兩個部分:第一部分為使用泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀(USS-ETV-ICP-MS)同時偵測藥錠中鉻、鉬、鈀、鎘、鉑及鉛的含量,並配合動態反應室(DRC)的使用,以降低因基質或輸送氣體所造成的光譜干擾。在研究中,對於修飾劑、DRC 條件、泥漿樣品的配製及儀器設定的條件等因素進行探討。實驗結果發現,以 1% m/v Ammonium pyrrolidine dithiocarbamate(APDC)及 0.025% m/v 8-Hydroxyquinoline (8-HQ)當作修飾劑時可以有效提升分析物的訊號;在泥漿樣品的配製中,則是選擇 1% m/v 的濃度,以避免因稀釋倍數太大而造成定量上的誤差,或因稀釋倍數太小而使樣品無法完全揮發;在儀器設定上,使用裂解溫度 300℃ 及揮發溫度 2400℃ 時可得最佳的訊號。在 DRC 系統中,使用 NH3 做反應氣體,可有效地降低 ArC+ 及 ClO+ 對 Cr 產生的多原子干擾,經過最適化的條件探討後,期望將 Cr 受到的光譜干擾降到最低以達到較準確的定量結果。最後,分析方法最適化後,將對三種市售的高血壓藥錠進行定量,其分析結果與藥錠微波消化後測得的值來做比較,發現並沒有太大差異,且定量結果其 RSD 值除了 Pt 為 14 - 25% 外,其餘皆介於 1.2% - 4.7%。藉此來驗證此分析方法之可行性。此方法對鉻、鉬、鈀、鎘、鉑及鉛的方法偵測極限分別為 0.5、0.9、0.3、0.3、0.1 及 0.3 ng g-1。

第二部分則是使用 USS-ETV-ICP-MS 對中草藥中有毒重金屬元素砷、鎘、汞及鉛的分析。在實驗中使用 1% m/v 8-HQ 當作修飾劑;泥漿樣品的配製中,則是選擇 0.5% m/v 的濃度;ETV 的設定選擇裂解溫度 180℃ 及揮發溫度 1900℃。在各分析條件最適化後,將此系統應用於三種中草藥的定量分析。為了驗證分析方法的可行性,首先選擇與中草藥有類似基質的標準參考樣品(Standard Reference Material)— SRM 1573a(蕃茄葉)及 SRM 1547 (桃葉)進行分析,其定量結果與標準參考值(Certified value)相吻合,且三種中草藥的定量結果與中草藥微波消化後以氣動式霧化器進樣及本實驗室同學使用氫化物生成進樣系統結合 ICP-MS 所測得的值結果相近,可證明 USS-ETV-ICP-MS 於分析中草藥中砷、鎘、汞及鉛的實用性。其定量結果的 RSD 值介於 1.0% - 4.4% 之間。此方法對砷、鎘、汞及鉛的方法偵測極限分別為 0.3、0.6、0.2 及 0.6 ng g-1。
Abstract
none
目次 Table of Contents
論文提要............................................................................... I
謝誌....................................................................................... IV
目錄........................................................................................V
圖表目錄.............................................................................VIII

第一章 泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於藥錠中鉻、鉬、鈀、鎘、鉑及鉛等元素之分析應用
壹、前言................................................................................1
一、研究背景........................................................................1
二、超音波泥漿取樣法結合電熱式揮發樣品輸入系統簡介..8
三、動態反應室系統簡介..................................................11
貳、實驗部分......................................................................12
一、儀器裝置及操作條件..................................................12
二、試劑藥品及溶液的配製..............................................19
三、藥錠泥漿樣品的製備與消化......................................22
參、結果與討論................................................................. 25
一、修飾劑的選擇..............................................................25
二、界面活性劑對分析物訊號的影響..............................32
三、酸對分析物訊號的影響..............................................32
四、稀釋倍數的探討..........................................................35
五、裂解溫度(Pyrolysis Temperature)及揮發溫度(Vaporization Temperature)的選擇...........................37
六、DRC系統之最佳化.....................................................40
七、光譜(同質量)干擾..................................................51
八、校正曲線..................................................................... 54
九、樣品定量分析..............................................................58
肆、結論..............................................................................61
伍、參考文獻......................................................................62

第二章 泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於中草藥中砷、鎘、汞及鉛等元素之分析應用
壹、前言.............................................................................68
一、研究背景.....................................................................68
二、砷、鎘、汞及鉛之個論.............................................73
貳、實驗部分.....................................................................75
一、儀器裝置及操作條件.................................................75
二、試劑藥品及溶液的配製.............................................78
三、中草藥泥漿樣品的製備與消化.................................81
參、結果與討論.................................................................83
一、修飾劑的選擇.............................................................83
二、界面活性劑對分析物訊號的影響.............................87
三、酸與鹼及氧化試劑對分析物訊號的影響.................90
四、稀釋倍數的探討.........................................................94
五、裂解溫度(Pyrolysis Temperature)及揮發溫度(Vaporization Temperature)的選擇 .........................94
六、光譜(同質量)干擾.................................................97
七、校正曲線..................................................................100
八、樣品定量分析..........................................................102
肆、結論..........................................................................107
伍、參考文獻..................................................................108
參考文獻 References
1.Nita, S.; Rughinis, R.; Rusu, N., and Balas, R., ICP-MS computer controlled determination of some trace elements in pharmaceutical containers and substances. Rev.Chim. 2009, 60 (4), 382-386.
2.Wang, T. B.; Wu, J.; Hartman, R.; Jia, X. J., and Egan, R. S., A multi-element ICP-MS survey method as an alternative to the heavy metals limit test for pharmaceutical materials. J. Pharm. Biomed. Anal. 2000, 23 (5), 867-890.
3.Niemela, M.; Kola, H.; Eilola, K., and Peramaki, P., Development of analytical methods for the determination of sub-ppm concentrations of palladium and iron in methotrexate. J. Pharm. Biomed. Anal. 2004, 35 (3), 433-439.
4.Resano, M.; Garcia-Ruiz, E.; Crespo, C.; Vanhaecke, F., and Belarra, M. A., Solid sampling-graphite furnace atomic absorption spectrometry for palladium determination at trace and ultratrace levels. J. Anal. At. Spectrom. 2003, 18 (12), 1477-1484.
5.Jia, X. J.; Wang, T. B., and Wu, J., Determination of palladium by graphite furnace atomic absorption spectroscopy without matrix matching. Talanta 2001, 54 (4), 741-751.
6.Margui, E.; Van Meel, K.; Van Grieken, R.; Buendia, A.; Fontas, C.; Hidalgo, M., and Queralt, I., Method for the determination of Pd-catalyst residues in active pharmaceutical ingredients by means of high-energy polarized-beam energy dispersive X-Ray fluorescence. Anal. Chem. 2009, 81 (4), 1404-1410.
7.Japanese Pharmacopoeia, Method 22, XIV edn, (Part I), pp. 43–44.
8.British Pharmacopoeia, Appendix, Norwich, UK, 2000, pp. A174–176.
9.European Pharmacopoeia, 5.2 Analytical Methods, Date of Implementation 2005, pp. 103-105.
10.The United States Pharmacopoeia, USP30. Chemical Tests. Limit Tests. <231> Heavy metals, pp. 146–147.
11.Olzan, R. C. B.; Rodrigues, L. F.; de Mattos, J. C. P.; Dressler, V. L., and Flores, T. M. D., Chromium determination in pharmaceutical grade barium sulfate by solid sampling electrothermal atomic absorption spectrometry with Zeeman-effect background correction. Talanta 2007, 74 (1), 119-124.
12.Jia, X. J.; Wang, T. B.; Bu, X. D.; Tu, Q. A., and Spencer, S., Determination of ruthenium in pharmaceutical compounds by graphite furnace atomic absorption spectroscopy. J. Pharm. Biomed. Anal. 2006, 41 (1), 43-47.
13.Lasztity, A.; Kelko-Levai, A.; Varga, I.; Zih-Perenyi, K., and Bertalan, E., Development of atomic spectrometric methods for trace metal analysis of pharmaceuticals. Microchem. J. 2002, 73 (1-2), 59-63.
14.Tu, Q.; Wang, T. B., and Welch, C. J., High-throughput metal screening in pharmaceutical samples by ICP-MS with automated flow injection using a modified HPLC configuration. J. Pharm. Biomed. Anal. 2010, 51 (1), 90-95.
15.Simitchiev, K.; Stefanova, V.; Kmetov, V.; Andreev, G.; Kovachev, N., and Canals, A., Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. J. Anal. At. Spectrom. 2008, 23 (5), 717-726.
16.Lewen, N.; Mathew, S.; Schenkenberger, M., and Raglione, T., A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J. Pharm. Biomed. Anal. 2004, 35 (4), 739-752.
17.Lewen, N.; Schenkenberger, M.; Larkin, T.; Conder, S., and Brittain, H. G., The determination of palladium in fosinopril sodium (monopril) by ICP-MS. J. Pharm. Biomed. Anal. 1995, 13 (7), 879-883.
18.Margui, E.; Fontas, C.; Buendia, A.; Hidalgo, M., and Queralt, I., Determination of metal residues in active pharmaceutical ingredients according to European current legislation by using X-ray fluorescence spectrometry. J. Anal. At. Spectrom. 2009, 24 (9), 1253-1257.
19.Lam, R. and Salin, E. D., Analysis of pharmaceutical tablets by laser ablation inductively coupled plasma atomic emission spectrometry and mass spectrometry (LA-ICP-AES and LA-ICP-MS). J. Anal. At. Spectrom. 2004, 19 (7), 938-940.
20.Ferreira, S. L. C.; Miro, M.; da Silva, E. G. P.; Matos, G. D.; dos Reis, P. S.; Brandao, G. C.; dos Santos, W. N. L.; Duarte, A. T.; Vale, M. G. R., and Araujo, R. G. O., Slurry sampling-an analytical strategy for the determination of metals and metalloids by spectroanalytical techniques. Appl. Spectrosc. Rev. 2010, 45 (1), 44-62.
21.Resano, M.; Vanhaecke, F., and de Loos-Vollebregt, M. T. C., Electrothermal vaporization for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry-a critical review with focus on solid sampling and slurry analysis. J. Anal. At. Spectrom. 2008, 23 (11), 1450-1475.
22.Aramendia, M.; Resano, M., and Vanhaecke, F., Electrothermal vaporization-inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples A critical review. Anal. Chim. Acta 2009, 648 (1), 23-44.
23.Huang, S. J. and Jiang, S. J., Determination of Zn, Cd and Pb in vegetable oil by electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16 (6), 664-668.
24.Ho, C. Y. and Jiang, S. J., Determination of Cr, Zn, Cd and Pb in milk powder by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2002, 17 (7), 688-692.
25.Li, P. C. and Jiang, S. J., Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determination of Cr, Cu, Cd, Hg and Pb in rice flour. Anal. Chim. Acta 2003, 495 (1-2), 143-150.
26.Ni, J. L.; Liu, C. C., and Jiang, S. J., Determination of Ga, Ge, As, Se and Sb in fly ash samples by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2005, 550 (1-2), 144-150.
27.Li, P. C. and Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Cd and Pb in plastics. Anal. Bioanal. Chem. 2006, 385 (6), 1092-1097.
28.Tseng, Y. J.; Liu, C. C., and Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma Mass spectrometry for the determination of As and Se in soil and sludge. Anal. Chim. Acta 2007, 588 (2), 173-178.
29.Tseng, Y. J.; Tsai, Y. D., and Jiang, S. J., Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples. Anal. Bioanal. Chem. 2007, 387 (8), 2849-2855.
30.Kuo, C. Y.; Jiang, S. J., and Sahayam, A. C., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22 (6), 636-641.
31.Sahayam, A. C.; Jiang, S. J., and Wan, C. C., Microwave assisted volatilization of silicon as fluoride for the trace impurity determination in silicon nitride by dynamic reaction cell inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 2007, 605 (2), 130-133.
32.Kuo, C. Y. and Jiang, S. J., Determination of selenium and tellurium compounds in biological samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. J. Chromatogr. A 2008, 1181 (1-2), 60-66.
33.Sahayam, A. C.; Jiang, S. J., and Chen, F. Y., Separation of trace impurities from boric acid using cloud point extraction for their determination by dynamic reaction cell inductively coupled plasma mass spectrometry. Atom. Spectrosc. 2008, 29 (1), 1-5.
34.Wang, K. E. and Jiang, S. J., Determination of iodine and bromine compounds by ion chromatography/dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Sci. 2008, 24 (4), 509-514.
35.Lin, L. Y. and Jiang, S. J., Determination of sulfur compounds in water samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. J. Chin. Chem. Soc. 2009, 56 (5), 967-973.
36.Meeravali, N. N. and Jiang, S. J., A novel cloud point extraction approach using cationic surfactant for the separation and pre-concentration of chromium species in natural water prior to ICP-DRC-MS determination. Talanta 2009, 80 (1), 173-178.
37.May, T. W. and Wiedmeyer, R. H., A table of polyatomic interferences in ICP-MS. Atom. Spectrosc. 1998, 19 (5), 150-155.
38.Tanner, S. D.; Baranov, V. I., and Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectroc. Acta Pt. B-Atom. Spectr. 2002, 57 (9), 1361-1452.
39.黃仕一, “泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於穀物樣品中微量元素之分析應用”, 中山大學碩士論文, 民國 98 年 7 月。
40.Volynsky, A. B. and de Loos-Vollebregt, M. T. C., Vaporization of Pb, As and Ga alone and in the presence of Pd modifier studied by electrothermal vaporization-inductively coupled mass spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 2005, 60 (11), 1432-1441.
41.Wu, Y. L.; Hu, B.; Jiang, Z. C., and Chen, S. Z., Low temperature vaporization for ICP-AES determination of palladium in geological samples using sample introduction of gaseous palladium oxinate. J. Anal. At. Spectrom. 2002, 17 (2), 121-124.
42.Bernhardt, J.; Buchkamp, T.; Hermann, G., and Lasnitschka, G., Transport efficiencies and analytical determinations with electrothermal vaporization employing electrostatic precipitation and electrothermal atomic spectroscopy. Spectroc. Acta Pt. B-Atom. Spectr. 1999, 54 (13), 1821-1829.
43.辜于誠, “微波輔助霧點萃取法結合動態反應管感應耦合電漿質譜儀於水樣中微量鉻、銅、鎘及鉛分析之應用”, 中山大學碩士論文, 民國 99 年 1 月。
44.蔡佳穎, “液相層析結合感應耦合電漿質譜儀於環境樣品中鉻與硒及穀物樣品中砷與硒型態分析之應用 ”, 中山大學碩士論文, 民國 98 年 7 月。
&#8195;
1.連森興, “中藥成藥中金屬濃度與人體暴露評估--以苗栗地區為例”, 台北醫學大學碩士論文, 民國 90 年 6 月。
2.Agency for toxic substances and disease registry. 2007 priority list of hazardous substances. http://www.atsdr.cdc.gov/cercla/clist-supportdoc.html.
3.盧芬鈴、陳儀驊、曾木全、羅吉方、林哲輝, “中藥材之重金屬檢驗(V)”, 藥物食品檢驗局調查研究年報, 27 : 51-64 2009。
4.Chen, B.; Wang, X. R., and Lee, F. S. C., Pyrolysis coupled with atomic absorption spectrometry for the determination of mercury in Chinese medicinal materials. Anal. Chim. Acta 2001, 447 (1-2), 161-169.
5.Huang, R. J.; Zhuang, Z. X.; Tai, Y.; Huang, R. F.; Wang, X. R., and Lee, F. S. C., Direct analysis of mercury in Traditional Chinese Medicines using thermolysis coupled with on-line atomic absorption spectrometry. Talanta 2006, 68 (3), 728-734.
6.Wang, W. L.; Liang, Z. S.; Tan, Y., and Duan, Q. M., Determination of mineral elements in different part of Astragalus membranaceus (Fisch.) by FAAS. Spectrosc. Spect. Anal. 2008, 28 (5), 1168-1171.
7.Martena, M. J.; Van Der Wielen, J. C. A.; Rietjens, I.; Klerx, W. N. M.; De Groot, H. N., and Konings, E. J. M., Monitoring of mercury, arsenic, and lead in traditional Asian herbal preparations on the Dutch market and estimation of associated risks. Food Addit. Contam. Part A-Chem. 2010, 27 (2), 190-205.
8.Wang, Y.; Feng, F., and Wang, Z., Determination of selected elements in aqueous extractions of a traditional chinese medicine formula by ICP-MS and FAAS: evaluation of formula rationality. Anal. Lett. 2010, 43 (6), 983-992.
9.Chen, B.; Zhuang, Z. X.; Wang, X. R., and Lee, F. S. C., A novel sample introduction technique for the simultaneous determination of As, Se, Ge and Hg in Chinese Medicinal Material. Chem. Res. Chin. Univ. 2001, 17 (4), 400-406.
10.Wu, X. H.; Sun, D. H.; Yang, C. Y.; Zhuang, Z. X., and Wang, X. R., Speciation of 9 trace elements in a traditional Chinese medicine Long Dan Cao by flow injection-inductively coupled plasma mass spectrometry with a focused microwave assisted extraction system. Spectrosc. Spect. Anal. 2002, 22 (1), 75-78.
11.Kou, X. M.; Xu, M., and Gu, Y. Z., Determination of trace heavy metal elements in cortex phellodendri chinensis by ICP-MS after microwave-assisted digestion. Spectrosc. Spect. Anal. 2007, 27 (6), 1197-1200.
12.Shi, L. F.; Xue, D. F.; Xu, H. G.; Liu, H., and Teng, W. F., Determination of Pb, Cd, Hg and As in three sorts of Chinese traditional medicine treating tumor by ICP-MS. Spectrosc. Spect. Anal. 2007, 27 (5), 1036-1037.
13.Yao, Y. H.; Xu, G. H.; Zhang, J. D.; Li, C. F., and Li, D. H., Determination of trace elements in traditional Chinese medicine from Changbai Mountain by ICP-MS. Spectrosc. Spect. Anal. 2008, 28 (5), 1165-1167.
14.Sun, W. M.; Xue, D. F.; Li, H.; Liu, H., and Teng, W. F., Determination of U, Th and Tl in Fourteen Chinese Traditional Medicines by Microwave Digestion-ICP-MS. Spectrosc. Spect. Anal. 2009, 29 (1), 256-258.
15.Chen, F.; Liang, P.; Hu, B.; Zhao, L.; Sun, D. A., and Wang, Y. R., The application of inductively coupled plasma atomic emission spectrometry/mass spectrometry in the trace elements and speciation analysis of traditional chinese medicine. Spectrosc. Spect. Anal. 2002, 22 (6), 1019-1024.
16.Liu, D. L.; Ke, S. Y.; Ye, R., and Ding, M. Y., Determination of trace lead in traditional chinese herbal medicine astragalus by microwave digestion-CTAB enhancing-continual flow ingection hydride generation-ICP-AES. Spectrosc. Spect. Anal. 2007, 27 (11), 2337-2340.
17.Li, M. F.; Liu, Y. X., and Wan, Y. Q., Determination of the trace elements in shengmai san decoction by ICP-AES. Spectrosc. Spect. Anal. 2008, 28 (2), 436-440.
18.Mao, L.; Tan, M. X.; Chen, Z. F., and Liang, H., Determination of metal contents of two chinese medicinal herbs, flemingiae philippinensis and sophora tonkinensis, grown in guangxi by ICP-AES. Spectrosc. Spect. Anal. 2009, 29 (9), 2568-2570.
19.Qin, J. L.; Chen, Z. F.; Liu, Y. C., and Liang, H., Determination of trace metal elements in zanthoxylum nitidum by ICP-AES. Spectrosc. Spect. Anal. 2009, 29 (10), 2851-2854.
20.Tan, M. X.; Chen, Z. F.; Wang, H. S.; Liu, Y. C., and Liang, H., Analysis of macroelements and microelements in chinese traditional medicine plumbago zeylanica linn by ICP-AES. Spectrosc. Spect. Anal. 2009, 29 (4), 1112-1114.
21.May, T. W. and Wiedmeyer, R. H., A table of polyatomic interferences in ICP-MS. Atom. Spectrosc. 1998, 19 (5), 150-155.
22.http://www.shengfoong.com.tw/ISO17025_005.htm.
23.Volynsky, A. B. and de Loos-Vollebregt, M. T. C., Vaporization of Pb, As and Ga alone and in the presence of Pd modifier studied by electrothermal vaporization-inductively coupled mass spectrometry. Spectroc. Acta Pt. B-Atom. Spectr. 2005, 60 (11), 1432-1441.
24.黃仕一, “泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於穀物樣品中微量元素之分析應用”, 中山大學碩士論文, 民國 98 年 7月。
25.黎伯謙, “泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於米及塑膠樣品中微量元素分析之應用”, 中山大學碩士論文, 民國 92 年 6月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code