Responsive image
博碩士論文 etd-0720111-150609 詳細資訊
Title page for etd-0720111-150609
論文名稱
Title
液相層析結合感應耦合電漿質譜儀與電灑質譜儀於營養補給品中含硒化合物與藍綠藻中含砷化合物之分析應用
Identification and Quantification of selenium-containing compound in dietary supplement and arsenic-containing compound in seaweed by HPLC-ICP-MS and HPLC-ESI-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-13
繳交日期
Date of Submission
2011-07-20
關鍵字
Keywords
感應耦合電漿質譜儀、液相層析、含硒化合物、含砷化合物、電灑質譜儀
selenium, arsenosugar, HPLC, ESI-MS, ICP-MS
統計
Statistics
本論文已被瀏覽 5692 次,被下載 3273
The thesis/dissertation has been browsed 5692 times, has been downloaded 3273 times.
中文摘要
在自然界中元素以不同氧化數或是各種化合物形式存在,各物種之間毒性與特性也隨之不同,相較於總量的測定,物種分析的結果更能夠完整的代表樣品。利用高效能液相層析(High Performance Liquid Chromatography,HPLC)將物種分離後導入感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometry, ICP-MS)進行分析,ICP-MS除了高靈敏度、線性範圍廣與同位素分析能力等優點,具有元素選擇性的概念使得在分析真實樣品時,能夠以現有標準品定量未知的物種;加上電灑質譜儀(Electrospray Ionization Mass Spectrometry,ESI-MS)的使用,能夠得到ICP-MS所缺乏的化合物結構資訊,在分析真實樣品時,能夠得到定量以及定性更完整的資訊。
第一部分研究中使用逆相層析結合感應耦合電漿質譜儀,分析營養補給品中的含硒化合物。分離機制上採用離子對逆相層析(Ion pair reverse phase,RP-IP),層析採用梯度沖提,以Sodium 1-pentanesulfonate添加於動相A中做為離子對試劑,為了縮短分析時間,而使用Monosodium phosphate添加於動相B中增強離子強度,並於兩動相中加入 5 mM Citric acid調整動相中pH至2.7,以及3% MeOH。在最適化層析條件下,成功地於九分鐘內分離Selenite(Se(VI))、Selenate(Se(IV))、Selenocystine((SeCys)2)、Se-(Methyl)selenocysteine(Se-MeSeCys)與Selenomethionine(SeMet)五種含硒化合物;為了減輕硒在之偵測時來自Ar的光譜干擾,以甲烷為DRC(Dynamic reaction cell)氣體,在經過DRC系統最適化後,五種含硒化合物偵測極限在0.04-0.07μg L-1之間。
在方法確效上選用SRM 1567a wheat flour,樣品則為三款賣場販售之營養補給品。樣品萃取上使用微波輔助酵素萃取(Microwave-assisted enzyme extraction,MAEE),即在微波進行萃取時加入蛋白酶(Protease XIV),在最適化萃取條件下各樣品萃取效率介於91-98%。且經過樣品萃取前添加不同濃度標準品,在計算各物種回收率皆介於92-104%之間,顯示此萃取方式之可行性。在未知物種鑑定上,將經過管柱分離後的液滴收集,注入ESI-MS後鑑定此化合物結構為γ-glutamylmethylselenocysteine,成功地得到樣品中未知物結構。其研究結果顯示,市面上含硒之營養補給品,主要分為無機硒鹽類添加以及植物萃取物為主,前者所偵測到物種以硒酸(Se(VI))為主,後者則以SeMet為主。
第二部分研究中則以離子層析結合感應耦合電漿質譜儀,分析藻類中的含砷化合物。層析使用陰離子交換管柱,動相由0.5 mM ammonium carbonate切換至50 mM ammonium carbonate,以及兩動相中加入1% MeOH,目的是為了提升砷的游離效率,於八分鐘內分離Arsenite(As(III))、Arsenate(As(V))、Monomethylarsonic acid(MMA)、Dimethylarsinic acid(DMA)、Arsenobetaine(AsB)及Arsenocholine(AsC)六種砷物種,其偵測極限介於0.006-0.015 μg L-1之間。
在方法確效上選用BCR 279 ulva lactuca,樣品則為市場販售各式食用性藻類。真實樣品萃取採用微波輔助萃取,萃取試劑為50%甲醇配製於動相A中,與消化結果對照後,證明此萃取方法能夠有效地萃取,其萃取效率介於84-96%之間,經萃取前添加標準品,其回收率皆介於91-106%之間,顯示此萃取方法之可行性。經HPLC-ESI-MS鑑定後顯示,在各種藻類樣品中雖然含有偏高的總砷量,但其含砷化合物主要以砷糖為主(Arsenosugar),其中又以OH-arsenoribose與PO4-arsenoribose最為普遍。
Abstract
none
目次 Table of Contents
摘要.......................................................................................... I
謝誌........................................................................................ III
目錄....................................................................................... IV
圖目錄................................................................................... VI
表目錄................................................................................. VIII
第一章 電灑質譜儀簡介
壹、原理................................................................................ 1
貳、參考文獻........................................................................ 7
第二章 液相層析結合感應耦合電漿質譜儀與電灑質譜儀於營養補給品中含硒化合物之分析應用
壹、前言................................................................................ 8
貳、動態反應槽原理.......................................................... 11
參、實驗部分
一、儀器裝置...................................................................... 13
二、試劑藥品以及硒元素標準溶液的配製...................... 14
肆、實驗過程
一、液相層析最適化探討.................................................. 18
二、DRC-ICP-MS系統最適化探討 ................................. 18
三、再現性.......................................................................... 20
四、校正曲線與偵測極限的估計...................................... 20
五、萃取條件最適化.......................................................... 20
六、真實樣品分析.............................................................. 22
伍、結果與討論
一、液相層析條件最適化探討.......................................... 27
二、DRC-ICP-MS系統最適化探討 ................................. 35
三、再現性.......................................................................... 44
四、校正曲線與偵測極限的估計...................................... 44
五、萃取條件最適化.......................................................... 44
六、真實樣品分析.............................................................. 50
陸、結論.............................................................................. 66
柒、參考文獻...................................................................... 67
第三章 液相層析結合感應耦合電漿質譜儀與電灑質譜儀於藍綠藻中含砷化合物之分析應用
壹、前言.............................................................................. 71
貳、實驗部分
一、儀器裝置...................................................................... 76
二、試劑藥品以及砷元素標準溶液的配製...................... 77
參、實驗過程
一、液相層析分離條件的選擇.......................................... 81
二、再現性.......................................................................... 81
三、校正曲線與偵測極限的估計...................................... 82
四、萃取條件最適化.......................................................... 82
五、真實樣品分析.............................................................. 83
肆、結果與討論
一、液相層析條件討論...................................................... 88
二、再現性.......................................................................... 88
三、校正曲線與偵測極限的估計...................................... 88
四、萃取條件最適化.......................................................... 93
五、真實樣品分析.............................................................. 99
伍、結論............................................................................ 127
陸、參考文獻.................................................................... 128
參考文獻 References
第一章
1. Dole, M., Mach, L. , Hines, R. L. , Mobley, R. C. , Ferguson, L. D. and Alice, M. B., Molecular beams of macroions. J. Chem. Phys. 1968, 49, 2240-2247.
2. Yamashita, M. a. F., J. B., Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984, 88, 4451-4459.
3. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M, Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.
4. Gaskell, S. J., Electrospray: Principles and practice. J. Mass Spectrom. 1997, 32 (7), 677-688.
5. Cole, R. B., Some tenets pertaining to electrospray ionization mass spectrometry. J. Mass Spectrom. 2000, 35 (7), 763-772.
6. 台灣布魯克生命科學股份有限公司
7. http://www.bio.fju.edu.tw/excel/content05/html/14.htm.
8. Cox, K. A.; Cleven, C. D.; Cooks, R. G., Mass Shifts and Local Space-Charge Effects Observed in the Quadrupole Ion-Trap at Higher Resolution. Int. J. Mass Spectrom. Ion Processes 1995, 144 (1-2), 47-65.
9. Raymond, E. M.; John, F. J. T., Quadrupole ion trap mass spectrometry. 2005.
10. Armirotti, A.; Scapolla, C.; Benatti, U.; Damonte, G., Electrospray ionization ion trap multiple-stage mass spectrometric fragmentation pathways of leucine and isoleucine: an ab initio computational study. Rapid Commun. Mass Spectrom. 2007, 21 (19), 3180-3184.
11. http://en.wikipedia.org/wiki/Mass_chromatogram.
第二章
1. K. Schwarz, J. G. B., G.M. Briggs, M.L. Scout, Prevention of exudative diathesis in chicks by factor 3 and selenium. Proc. Soc. Exp. Biol. Med 1957, 95, 621-625.
2. Arnault, I.; Auger, J., Seleno-compounds in garlic and onion. J. Chromatogr. A 2006, 1112 (1-2), 23-30.
3. Schrauzer, G. N., Nutritional selenium supplements: Product types, quality, and safety. J. A. C. N. 2001, 20 (1), 1-4.
4. Xia, Y. M.; Hill, K. E.; Byrne, D. W.; Xu, J. Y.; Burk, R. F., Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr. 2005, 81 (4), 829-834.
5. Dumont, E., Hyphenated techniques forspeciation of Se in biological matrices. 2006.
6. http://en.wikipedia.org/wiki/Selenium.
7. Dumont, E.; Vanhaecke, F.; Cornelis, R., Selenium speciation from food source to metabolites: a critical review. Anal. Bioanal. Chem. 2006, 385 (7), 1304-1323.
8. Infante, H. G.; Hearn, R.; Catterick, T., Current mass spectrometry strategies for selenium speciation in dietary sources of high-selenium. Anal. Bioanal. Chem. 2005, 382 (4), 957-967.
9. http://www.vitaadd.com/product/product.asp?id=26&productid=625.
10. Michalke, B.; Schramel, P., Selenium speciation by interfacing capillary electrophoresis with inductively coupled plasma-mass spectrometry. Electrophoresis 1998, 19 (2), 270-275.
11. Stadlober, M.; Sager, M.; Irgolic, K. J., Effects of selenate supplemented fertilisation on the selenium level of cereals - identification and quantification of selenium compounds by HPLC-ICP-MS. Food Chem. 2001, 73 (3), 357-366.
12. Zheng, J.; Ohata, M.; Furuta, N.; Kosmus, W., Speciation of selenium compounds with ion-pair reversed-phase liquid chromatography using inductively coupled plasma mass spectrometry as element-specific detection. J. Chromatogr. A 2000, 874 (1), 55-64.
68
13. Cabanero, A. I.; Madrid, Y.; Camara, C., Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal. Chim. Acta 2004, 526 (1), 51-61.
14. Shah, M.; Kannamkumarath, S. S.; Wuilloud, J. C. A.; Wuilloud, R. G.; Caruso, J. A., Identification and characterization of selenium species in enriched green onion (Allium fistulosum) by HPLC-ICP-MS and ESI-ITMS. J. Anal. At. Spectrom. 2004, 19 (3), 381-386.
15. Ogra, Y.; Ishiwata, K.; Iwashita, Y.; Suzuki, K. T., Simultaneous speciation of selenium and sulfur species in selenized odorless garlic (Allium sativum L. Shiro) and shallot (Allium ascalonicum) by HPLC-inductively coupled plasma-(octopole reaction system)-mass spectrometry and electrospray ionization-tandem mass spectrometry. J. Chromatogr. A 2005, 1093 (1-2), 118-125.
16. Larsen, E. H.; Lobinski, R.; Burger-Meyer, K.; Hansen, M.; Ruzik, R.; Mazurowska, L.; Rasmussen, P. H.; Sloth, J. J.; Scholten, O.; Kik, C., Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal. Bioanal. Chem. 2006, 385 (6), 1098-1108.
17. Afton, S.; Kubachka, K.; Catron, B.; Caruso, J. A., Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection Applications to river water, plant extract and urine matrices. J. Chromatogr. A 2008, 1208 (1-2), 156-163.
18. Wang, T. B., Liquid chromatography - Inductively coupled plasma mass spectrometry (LC-ICP-MS). J. Liq. Chromatogr. Related Technol. 2007, 30 (5-8), 807-831.
19. Tanner, S. D.; VI, B.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta Part B 2002, 57 (9), 1361-1452.
20. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell. J. Am. Soc. Mass Spectrom. 2002, 13 (10), 1176-1185.
21. Zheng, J.; Kosmus, W., Retention study of inorganic and organic selenium compounds on a silica-based reversed phase column with mixed ion-pairing reagents. Chromatographia 2000, 51 (5-6), 338-344.
22. Sun, B. G.; Macka, M.; Haddad, P. R., Speciation of arsenic and selenium by capillary electrophoresis. J. Chromatogr. A 2004, 1039 (1-2), 201-208.
69
23. Pedrero, Z.; Madrid, Y., Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Anal. Chim. Acta 2009, 634 (2), 135-152.
24. Tsai, C. Y.; Jiang, S. J., Microwave-assisted Extraction and Ion Chromatography Dynamic Reaction Cell Inductively Coupled Plasma Mass Spectrometry for the Speciation Analysis of Arsenic and Selenium in Cereals. Anal. Sci. 2011, 27 (3), 271-276.
25. 賴珮珊. 感應偶合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中有機錫物種分析之應用. 國立中山大學, 高雄市, 2004.
26. Pyrzynska, K., Selenium speciation in enriched vegetables. Food Chem. 2009, 114 (4), 1183-1191.
27. Gilon, N.; Astruc, A.; Astruc, M.; Potin-Gautier, M., Selenoamino acid speciation using HPLC–ETAAS following an enzymic hydrolysis of selenoprotein. John Wiley & Sons, Ltd.: 1995; Vol. 9, pp 623-628.
28. Wang, W. H.; Chen, Z. L.; Davey, D. E.; Naidu, R., Extraction of selenium species in pharmaceutical tablets using enzymatic and chemical methods. Microchim. Acta 2009, 165 (1-2), 167-172.
29. Tsopelas, F. N.; Ochsenkuhn-Petropoulo, M. T.; Mergias, I. G.; Tsakanika, L. V., Comparison of ultra-violet and inductively coupled plasma-atomic emission spectrometry for the on-line quantification of selenium species after their separation by reversed-phase liquid chromatography. Anal. Chim. Acta 2005, 539 (1-2), 327-333.
30. Bendahl, L.; Gammelgaard, B., Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples. J. Anal. At. Spectrom. 2004, 19 (1), 143-148.
31. Mar, J. L. G.; Reyes, L. H.; Rahman, G. A. M.; Kingston, H. M. S., Simultaneous Extraction of Arsenic and Selenium Species From Rice Products by Microwave-Assisted Enzymatic Extraction and Analysis by Ion Chromatography-inductively Coupled Plasma-Mass Spectrometry. J. Agric. Food Chem. 2009, 57 (8), 3005-3013.
32. Hsieh, M. W.; Liu, C. L.; Chen, J. H.; Jiang, S. J., Speciation analysis of arsenic and selenium compounds by CE-dynamic reaction cell-ICP-MS. Electrophoresis 2010, 31 (13), 2272-2278.
70
33. Guo, W.; Hu, S. H.; Li, X. F.; Zhao, J.; Jin, S. S.; Liu, W. J.; Zhang, H. F., Use of ion-molecule reactions and methanol addition to improve arsenic determination in high chlorine food samples by DRC-ICP-MS. Talanta 2011, 84 (3), 887-894.
34. Larsen, E. H.; Sturup, S., Carbon-Enhanced Inductively-Coupled Plasma-Mass Spectrometric Detection of Arsenic and Selenium and Its Application to Arsenic Speciation. J. Anal. At. Spectrom. 1994, 9 (10), 1099-1105.
35. Raber, G.; Raml, R.; Goessler, W.; Francesconi, K. A., Quantitative speciation of arsenic compounds when using organic solvent gradients in HPLC-ICPMS. J. Anal. At. Spectrom. 2010, 25 (4), 570-576.
36. Srbek, J.; Coufal, P.; Bosakova, Z.; Tesarova, E., System peaks and their positive and negative aspects in chromatographic techniques. J. Sep. Sci. 2005, 28 (12), 1263-1270.
37. 謝孟緯. 一、雷射剝蝕結合感應耦合電漿質譜儀分析鋼鐵中輕元素之應用;二、毛細管電泳結合感應耦合電漿質譜儀於砷及硒物種分析之應用. 國立中山大學, 高雄市, 2009.
38. Lindemann, T.; Hintelmann, H., Selenium speciation by HPLC with tandem mass spectrometric detection. Anal. Bioanal. Chem. 2002, 372 (3), 486-490.
39. Dumont, E.; Ogra, Y.; Suzuki, K. I.; Vanhaecke, F.; Cornelis, R., Liquid chromatography-electrospray ionization tandem mass spectrometry for on-line characterization, monitoring and isotopic profiling of the main selenium-metabolite in human urine after consumption of Se-rich and Se-enriched food. Anal. Chim. Acta 2006, 555 (1), 25-33.
第三章
1. Chen, H. W., Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bull. Environ. Contam. Toxicol. 2007, 78 (2), 113-117.
2. Lebow, S.; Foster, D.; Evans, J., Long-term soil accumulation of chromium, copper, and arsenic adjacent to preservative-treated wood. Bull. Environ. Contam. Toxicol. 2004, 72 (2), 225-232.
3. Carson, B. L.; Ellis, H. V.; McCann, J. L., Toxicology and biological monitoring of metals in humans: Including feasibility and need. 1986.
4. Agahian, B.; Lee, J. S.; Nelson, J. H.; Johns, R. E., Arsenic Levels in Fingernails as a Biological Indicator of Exposure to Arsenic. Am. Ind. Hyg. Assoc. J. 1990, 51 (12), 646-651.
5. Qi, Y. Q.; Donahoe, R. J., The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Sci. Total Environ. 2008, 405 (1-3), 246-254.
6. Wai, C. M.; Wang, J. S.; Yang, M. H., Arsenic contamination of groundwater, Blackfoot disease, and other related health problems. Biogeochemistry of Environmentally Important Trace Elements 2003, 835, 210-231.
7. http://sa.ylib.com/forum/forumshow.asp?FDocNo=530&CL=16.
8. Sakurai, T.; Kaise, T.; Ochi, T.; Saitoh, T.; Matsubara, C., Study of in vitro cytotoxicity of a water soluble organic arsenic compound, arsenosugar, in seaweed. Toxicology 1997, 122 (3), 205-212.
9. Ma, M. S.; Le, X. C., Effect of arsenosugar ingestion on urinary arsenic speciation. Clin. Chem. 1998, 44 (3), 539-550.
10. Velez, D.; Ybanez, N.; Montoro, R., Migration of arsenobetaine from canned seafood to brine. J. Agric. Food Chem. 1997, 45 (2), 449-453.
11. Reyes, L. H.; Mar, J. L. G.; Rahman, G. M. M.; Seybert, B.; Fahrenholz, T.; Kingston, H. M. S., Simultaneous determination of arsenic and selenium species in fish tissues using microwave-assisted enzymatic extraction and ion chromatography-inductively coupled plasma mass spectrometry. Talanta 2009, 78 (3), 983-990.
12. Penrose, W. R., Arsenic in the marine and aquatic environment. Analysis, occurrence, and significance. Crit. Rev. Environ. Control 1974, 4, 465-482.
13. Kaise, T.; Fukui, S., The Chemical Form and Acute Toxicity of Arsenic Compounds in Marine Organisms. Appl. Organomet. Chem. 1992, 6 (2), 155-160.
129
14. Pizarro, I.; Gomez, M.; Camara, C.; Palacios, M. A., Arsenic speciation in environmental and biological samples - Extraction and stability studies. Anal. Chim. Acta 2003, 495 (1-2), 85-98.
15. Le, X. C.; Lu, X. F.; Li, X. F., Arsenic speciation. Anal. Chem. 2004, 76 (1), 26a-33a.
16. Styblo, M.; Hughes, M. F.; Thomas, D. J., Liberation and analysis of protein-bound arsenicals. J. Chromatogr. B 1996, 677 (1), 161-166.
17. McKnight-Whitford, A., Arsenic Binding to Thiols and Applications to Electrospray Mass Spectrometry Detection. 2010.
18. Del Razo, L. M.; Styblo, M.; Cullen, W. R.; Thomas, D. J., Determination of trivalent methylated arsenicals in biological matrices. Toxicol. and Appl. Pharmacol. 2001, 174 (3), 282-293.
19. Le, X. C.; Lu, X. F.; Ma, M. S.; Cullen, W. R.; Aposhian, H. V.; Zheng, B. S., Speciation of key arsenic metabolic intermediates in human urine. Anal. Chem. 2000, 72 (21), 5172-5177.
20. Le, X. C.; Chen, L. W. L.; Lu, X. F., Complementary chromatography separation combined with hydride generation-inductively coupled plasma mass spectrometry for arsenic speciation in human urine. Anal. Chim. Acta 2010, 675 (1), 71-75.
21. Parsons, P. J.; Ito, K.; Palmer, C. D.; Steuerwald, A. J., Determination of five arsenic species in whole blood by liquid chromatography coupled with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2010, 25 (8), 1334-1342.
22. Guerin, T.; Leufroy, A.; Noel, L.; Dufailly, V.; Beauchemin, D., Determination of seven arsenic species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction: Method validation and occurrence data. Talanta 2011, 83 (3), 770-779.
23. Heitland, P.; Koster, H. D., Comparison of different medical cases in urinary arsenic speciation by fast HPLC-ICP-MS. Int. J. Hyg. Envir. Heal. 2009, 212 (4), 432-438.
24. Feldmann, J.; Krupp, E., Critical review or scientific opinion paper: Arsenosugars—a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs? Anal. BioAnal. Chem. 399 (5), 1735-1741.
25. Hansen, H. R.; Pickford, R.; Thomas-Oates, J.; Jaspars, M.; Feldmann, J., 2-dimethylarsinothioyl acetic acid identified in a biological sample: The first occurrence of a mammalian arsinothioyl metabolite. Angew. Chem. 2004, 43 (3), 337-340.
26. Frankenberger, W. T. J. e., Environmental Chemistry of Arsenic. 2002.
130
27. Edmonds, J. S.; Shibata, Y.; Francesconi, K. A.; Rippingale, R. J.; Morita, M., Arsenic transformations in short marine food chains studied by HPLC-ICP MS. Appl. Organomet. Chem. 1997, 11 (4), 281-287.
28. Madsen, A. D.; Goessler, W.; Pedersen, S. N.; Francesconi, K. A., Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. J. Anal. At. Spectrom.2000, 15 (6), 657-662.
29. Van Hulle, M.; Zhang, C.; Zhang, X. R.; Cornelis, R., Arsenic speciation in chinese seaweeds using HPLC-ICP-MS and HPLC-ES-MS. Analyst 2002, 127 (5), 634-640.
30. Feldmann, J.; Amayo, K. O.; Petursdottir, A.; Newcombe, C.; Gunnlaugsdottir, H.; Raab, A.; Krupp, E. M., Identification and Quantification of Arsenolipids Using Reversed-Phase HPLC Coupled Simultaneously to High-Resolution ICPMS and High-Resolution Electrospray MS without Species-Specific Standards. Anal. Chem. 2011, 83 (9), 3589-3595.
31. Mattusch, J.; Arroyo-Abad, U.; Mothes, S.; Moeder, M.; Wennrich, R.; Elizalde-Gonzalez, M. P.; Matysik, F. M., Detection of arsenic-containing hydrocarbons in canned cod liver tissue. Talanta 2010, 82 (1), 38-43.
32. Suner, M. A.; Devesa, V.; Munoz, O.; Velez, D.; Montoro, R., Application of column switching in high-performance liquid chromatography with on-line thermo-oxidation and detection by HG-AAS and HG-AFS for the analysis of organoarsenical species in seafood samples. J. Anal. At. Spectrom.2001, 16 (4), 390-397.
33. 蔡育端. 動力反應室感應偶合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中微量元素分析之應用. 國立中山大學, 高雄市, 2003.
34. 賴珮珊. 感應偶合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中有機錫物種分析之應用. 國立中山大學, 高雄市, 2004.
35. Tsai, C. Y.; Jiang, S. J., Microwave-assisted Extraction and Ion Chromatography Dynamic Reaction Cell Inductively Coupled Plasma Mass Spectrometry for the Speciation Analysis of Arsenic and Selenium in Cereals. Anal. Sci. 2011, 27 (3), 271-276.
36. 朱韻菱. 液相層析結合感應耦合電漿質譜儀於環境樣品中鉈及食用油中砷物種分析之應用. 國立中山大學, 高雄市.
37. Zheng, J.; Goessler, W.; Kosmus, W., The chromatographic behavior of arsenic compounds on anion exchange columns with binary organic acids as mobile phases. Chromatographia 1998, 47 (5-6), 257-263.
38. Tyson, J. F.; Pan, F. M.; Uden, P. C., Simultaneous speciation of arsenic and selenium in human urine by high-performance liquid chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.2007, 22 (8), 931-937.
131
39. Rubio, R.; Ruiz-Chancho, M. J.; Lopez-Sanchez, J. F., Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants. Trends Anal. Chem. 2010, 29 (1), 53-69.
40. Nischwitz, V.; Kanaki, K.; Pergantis, S. A., Mass spectrometric identification of novel arsinothioyl-sugars in marine bivalves and algae. J. Anal. At. Spectrom.2006, 21 (1), 33-40.
41. Foster, S.; Maher, W.; Krikowa, F.; Apte, S., A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 2007, 71 (2), 537-549.
42. Gallagher, P. A.; Shoemaker, J. A.; Wei, X. Y.; Brockhoff-Schwegel, C. A.; Creed, J. T., Extraction and detection of arsenicals in seaweed via accelerated solvent extraction with ion chromatographic separation and ICP-MS detection. Fresenius Journal of Anal. Chem. 2001, 369 (1), 71-80.
43. Mattusch, J.; Cimpean, M.; Wennrich, R., Enzyme-assisted extraction of arsenic species from plant material. Int. J. Environ. Anal. Chem. 2006, 86 (9), 629-640.
44. Cao, X.; Hao, C. L.; Wang, G.; Yang, H. H.; Chen, D. Y.; Wang, X. R., Sequential extraction combined with HPLC-ICP-MS for As speciation in dry seafood products. Food Chem. 2009, 113 (2), 720-726.
45. Salgado, S. G.; Nieto, M. A. Q.; Simon, M. M. B., Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry. J. Chromatogr. A 2006, 1129 (1), 54-60.
46. Tukai, R.; Maher, W. A.; McNaught, I. J.; Ellwood, M. J., Measurement of arsenic species in marine macroalgae by microwave-assisted extraction and high performance liquid chromatography-inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2002, 457 (2), 173-185.
47. Pergantis, S. A.; Francesconi, K. A.; Goessler, W.; ThomasOates, J. E., Characterization of arsenosugars of biological origin using fast atom bombardment tandem mass spectrometry. Anal. Chem. 1997, 69 (23), 4931-4937.
48. Larsen, B. R.; Astorga-Llorens, C.; Florencio, M. H.; Bettencourt, A. M., Fragmentation pathways of organoarsenical compounds by electrospray ion trap multiple mass spectrometry (MS6). J. Chromatogr. A 2001, 926 (1), 167-174.
49. McSheehy, S.; Mester, Z., Arsenic speciation in marine certified reference materials - Part 1. Identification of water-soluble arsenic species using multidimensional liquid chromatography combined with inductively coupled plasma, electrospray and electrospray high-field asymmetric waveform ion mobility spectrometry with mass spectrometric detection. J. Anal. At. Spectrom.2004, 19 (3), 373-380.
132
50. Wahlen, R.; McSheehy, S.; Scriver, C.; Mester, Z., Arsenic speciation in marine certified reference materials - Part 2. The quantification of water-soluble arsenic species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.2004, 19 (7), 876-882.
51. Gamble, B. M.; Gallagher, P. A.; Shoemaker, J. A.; Wei, X.; Schwegel, C. A.; Creed, J. T., An investigation of the chemical stability of arsenosugars in simulated gastric juice and acidic environments using IC-ICP-MS and IC-ESI-MS/MS. Analyst 2002, 127 (6), 781-785.
52. Wei, C.; Li, W. H.; Zhang, C.; Van Hulle, M.; Cornelis, R.; Zhang, X. R., Safety evaluation of organoarsenical species in edible porphyra from the China Sea. J. Agric. Food Chem. 2003, 51 (17), 5176-5182.
53. Larsen, E. H.; Sturup, S., Carbon-Enhanced Inductively-Coupled Plasma-Mass Spectrometric Detection of Arsenic and Selenium and Its Application to Arsenic Speciation. J. Anal. At. Spectrom.1994, 9 (10), 1099-1105.
54. Bohari, Y.; Lobos, G.; Pinochet, H.; Pannier, F.; Astruc, A.; Potin-Gautier, M., Speciation of arsenic in plants by HPLC-HG-AFS: extraction optimisation on CRM materials and application to cultivated samples. J. Environ. Monit. 2002, 4 (4), 596-602.
55. Raab, A.; Fecher, P.; Feldmann, J., Determination of arsenic in algae - Results of an interlaboratory trial: Determination of arsenic species in the water-soluble fraction. Microchim. Acta 2005, 151 (3-4), 153-166.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code