Responsive image
博碩士論文 etd-0720112-103144 詳細資訊
Title page for etd-0720112-103144
論文名稱
Title
以溶凝膠法製作體積式繞射元件及其形貌量測技術之應用
Fabrication of volume holograms using sol-gel technology and its application to 3D profile measurement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
154
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-15
繳交日期
Date of Submission
2012-07-20
關鍵字
Keywords
溶凝膠、繞射效率、全像紀錄、內視鏡、條紋投影輪廓儀
projected fringes profilometry, endoscope, diffraction efficiency, sol-gel, Holographic recording
統計
Statistics
本論文已被瀏覽 5672 次,被下載 442
The thesis/dissertation has been browsed 5672 times, has been downloaded 442 times.
中文摘要
本論文研究以溶凝膠技術製備含有光聚合功能之矽基體積全像儲存材料,並藉由易進行之化學合成方式,克服了此材料在記錄過程中易產生龜裂之缺點。此材料組成以低分子量之OH端基聚二甲基矽氧烷(polydimethylsiloxane, PDMS)為矽橡膠,搭配矽基材、環氧基之介面耦合劑,以及具有光聚合作用之丙烯酸單體為主。PDMS之添加,其機械性質(應力、應變、韌性)相較於未添加者均有大大之提升,而在光學性質的比較上,其繞射效率並不會因添加PDMS而受到明顯之影響。利用5.02Mw之藍光雷射進行全像干涉之光學紀錄測試,可得到其最大繞射效率η接近40%。本研究亦針對丙烯酸類聚合物分子量及全像材料繞射效率之關聯性作差異分析與敘述,發現到全像材料會有提早達到飽和之聚合現象,此歸因於矽多孔材料中之自由基聚合反應(free radical polymerization)因孔隙阻礙而產生遲緩的聚合現象。其次,本研究亦比較了光起始劑濃度對繞射效率之影響,並發現適當的聚合分子量可以達到高繞射效率。此材料不易龜裂特性肇因於其材料系統獨特之化學組成與耐衝擊改值劑矽橡膠之添加。
延續上述研究結果,本論文進一步針對此類矽材之孔洞性質(大小、體積、表面積)與光學之繞射效率做比較與特性分析。在PDMS添加下,上述孔洞性質有明顯之變化,且實驗結果發現適當之孔洞尺寸可以達到最大之繞射效率。
另一方面,在此類材料之光學應用上,我們利用此全像材料作為投影輪廓儀量測系統(Projected fringes profilometry, PFP)之繞射元件。紀錄過程中,利用光纖作為光源,將編碼條紋影像紀錄於此介質內部。並利用雙投影系統之架構,將此繞射元件之條紋影像投影至微小物體,並利用內視鏡擷取,藉由PFP量測系統所包含之程式運算,還原出物體之表面形貌。
Abstract
A series of sol-gel based photopolymerizable silica glass for holographic storage have been synthesized via a facile chemical design in an effort to overcome the cracking problem incurred during the irradiation stage. The holographic composite material includes a low molecular weight polydimethylsiloxane (PDMS) with end-capped hydroxyl groups, an epoxide-containing coupling agent, a photopolymerizable acrylate monomer, and the sol-gel-derived silica matrix. Inclusion of PDMS provides improved compression stress and strain and toughness over the original unmodified samples, without deterioration on the diffraction efficiency (η). A plateau value of η ~ 40 % can be found under a beam power of 5.02 mW. Correlation between the molecular weight of acrylate polymer and η of the holographic composite material is described and the discrepancies analyzed. The premature saturation of polymerization in the holographic system is attributed to the retarded free radical polymerization within the silica matrix. Minor variation of η with photoinitiator concentration is observed, indicating that only moderate molecular weight is required for a reasonably high η. The crack-free mechanism is based on the chemical and physical interactions within the material system.
We also investigated the pore size and volume effect for optical properties, especially in studies of diffraction efficiency. With mixing rubber additives, the pore characteristics change via measurement of BET technique. The results indicated that moderate pore size made high diffraction efficiency for porous matrix and some characterizations also were presented.
On the other hand, the optical application of this recording medium was described via 3D projected fringes profilometry (PFP) measurement. We recorded coded pattern on medium by employing fiber devices as light source. Using endoscope as image-derived tool, we get double-projected fringe images on tiny object. By PFP technique, a performed retrieved image can be achieved.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 v
圖目次 xii
表目次 xvii
符號表 xviii
縮寫表 xix

第一章 緒論 1
1.1 前言 1
1.2 研究目的與立論基礎 2
1.3 研究方法 4
1.3.1體積全像儲存材料之分析 4
1.3.2 體積全像儲存材料之形貌量測運用 5
1.4 本論文章節安排 6
參考資料 8

第二章 理論基礎 9
2.1全像感光儲存材料介紹 9
2.2溶膠-凝膠製程 12
2.2.1溶膠-凝膠法簡介 12
2.2.2 凝固與收縮現象概述 16
2.2.3 表面張力與毛細現象 17
2.3光聚合反應 21
2.3.1 基材 22
2.3.2 單體 22
2.3.3 光起始劑 23
2.4全像干涉理論簡述 23
2.5結語 25
參考資料 26

第三章 添加矽橡膠之新式光學儲存材料之機械與光學性質探討 29
3.1 簡介 29
3.2文獻回顧與研究動機 30
3.3 實驗內容 32
3.3.1實驗藥品 32
3.3.2全像紀錄介質的製備 34
3.3.3全像讀取 38
3.3.4機械強度測試 39
3.3.5膠體層析分析試驗 39
3.4實驗結果 40
3.4.1矽橡膠添加之機械強度影響 40
3.4.2入射雷射光強度與繞射效率之關係 42
3.4.3光起始劑濃度與繞射效率變化之關係 45
3.5實驗討論 46
3.5.1 EG-PEA聚合物分子量與繞射效率的影響 46
3.5.2矽凝膠無機相與高分子有機相的相容性 47
3.5.3殘餘的光起始劑影響 48
3.5.4浸泡過程之感光物質濃度影響 49
3.5.5繞射效率的下降 49

3.6 結語 50
參考資料 51

第四章 光學儲存材料之孔洞性質探討 55
4.1簡介與研究動機 55
4.2 實驗內容 56
4.2.1 矽基板合成 56
4.2.2 全像紀錄介質製備 57
4.2.3 繞射效率測試 58
4.2.4光譜分析與顯微鏡觀察 58
4.3 實驗結果與討論 60
4.3.1矽基板之孔洞性質 60
4.3.2全像干涉條紋觀察 64
4.3.3光譜圖分析 65
4.3.4 繞射效率的變化 70
4.3.5材料特性分析 71
4.4 結語 74
參考資料 75

第五章 繞射元件應用於微小物體之三維形貌量測 79
5.1背景與研究動機 79
5.2實驗原理 81
5.3實驗內容 87
5.3.1實驗設備 87
5.3.2單一週期全像繞射元件製作 88
5.3.3以同調光針對待測物體與參考平面之三維形貌雙投影量測 89
5.3.4以非同調光源針對待測物與參考平面之三維形貌量測 93
5.3.5 精確值量測 94
5.4實驗結果與討論 94
5.4.1以同調光源進行三維形貌量測 94
5.4.2以非同調光源 (LED)進行三維形貌量測 103
5.5 結語 111
參考資料 112

第六章 結論與未來可研究方向 113
6.1 結論 113
6.1.1新式全像儲存材料之設計 113
6.1.2全像儲存材料機械性質 113
6.1.3全像儲存材料之光學繞射效率 114
6.1.4 孔洞與繞射效應關係 114
6.1.5搭配微小元件進行三維型貌光學量測 114
6.2 未來可研究之方向 115
6.2.1 化學製程 115
6.2.2 材料性質 115
6.2.3光學應用 115
參考資料 117

附錄 全域量測之投影條紋輪廓儀多重影像重建 118
1. 背景與研究動機 118
2. 實驗原理 119
2.1投影條紋的攝影量測 119
2.2定義參數 121
2.3 多重量測之校正 123
3. 實驗內容 126
4. 結語 130
參考資料 131
作者簡介 132
參考文獻 References
chap1

[1] Types of Storage Devices, http://www.maths.tcd.ie/~nora/DT315-1/Storage%20Devices.pdf
[2] P. H. Liu, and etc, “A CMOS Multi-Format Read/Write SoC for 7xBlu-ray/ 16xDVD/ 56xCD” IEEE International Solid-State Circuits Conference, 1 (2005) 572-618
[3] H. Takasaki, “Moire Topography” Appl. Opt. 9 (1970) 1467-1472
[4] S. F. Scheiber, Building a successful broad-test strategy, Newnes, Woburn, 2001
[5] THE BASIC HOLOGRAM, http://www.holo.com/holo//book/book.html#thholo
[6] S. Lin, K. Hsu, W. Whang “Phenanthrenequinone-doped Poly(methyl methacrylate) Photopolymer Bulk for Volume Holographic Data Storage” Opt. Lett. 25 (2001) 451-453
[7] M.Yonemura, T.Nishisaka, H. Machida, “Endoscopic Hologram Interferometry Using Fiber Optics”Appl. Opt. 20 (1981) 1664-1667
[8] L. Hench, W. Vasconcelos, “Gel-Silica Science”Annu. Rev. Mater. Sci 20 (1990) 269-298
[9] G. Lu, S. Wu, N. Palmer, H. Liu, ”Application of Phase-Shift Optical Triangulation to Precision Gear Gauging” Proc SPIE 3520 (1998) 52-63
[10] W. H. Su, K. Reichard, H. Liu, S. Yin, “Integration of Segmented 3D Profiles Measured by Calibration-based Phase-Shifting Projected Fringe Profilometry (PSPFP)” Opt. Mem. & Neural Net. 12 (2003) 51-63

chap2

[1] W. R. Graver, J. W. Gladden, J. W. Eastes “Phase Holograms Formed by Silver Halide (Sensitized) Gelatin Processing”Appl. Opt. 19 (1980) 1529-1536
[2] T. A. Shankoff, “The Mechanism of Hologram Formation in Dichromated Gelatin”Appl. Opt. 7(1968)2101-2105
[3] J.O. White, M. CroninGolomb, B.Fischer, A.Yariv “Coherent Oscillation by
Self-Induced Gratings in the Photorefractive Crystal BaTiO3” Appl. Phys. Lett. 40
(1982) 450-452
[4] W. S. Colburn, K. A. Haines, “Volume Hologram Formation in Photopolymer Materials” Appl. Opt. 10 (1971) 1636-1641
[5] P. Hariharan “Basic of holography” Cambridge University Press, Cambridge, 2002
[6] C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990
[7] R.Ciriminna, M. Sciortino, G. Alonzo, A. de Schrijver, M. Pagliaro, “From Molecules to Systems: Sol-Gel Microencapsulation in Silica-Based Materials” Chem. Rev. 111 (2011) 765–789
[8] H.Dislich, P. Hinz, “History and Principles of The Sol-Gel Process and Some New Multicomponent Oxide Coatings” J. Non-Cryst. Solids. 48 (1982) 11-16
[9] J. Wen, G. L. Wilkes, “Organic/Inorganic Hybrid Network Materials by the
Sol-Gel Approach” Chem. Mater. 8 (1996) 1667-1681
[10] M. M. Collinson, “Sol-Gel Strategies for the Preparation of Selective Materials for Chemical Analysis” Crit. Rev. Anal. Chem. 29 (1999) 289-311
[11] R. K. Dwivedi, “Drying behaviour of alumina gels” J. Mater. Sci. Lett. 5, (1986) 373-376
[12] S. Hareid, E. Nilsen, M. A. Einarsrud, “Properties of Silica Gels Aged in TEOS” J. Non-Cryst. Solids 204 (1996) 228-2344
[13] P. M. Shewale, A.V. Rao, A. P. Rao, S. D. Bhagat, “Synthesis of Transparent Silica Aerogels with Low Density and Better Hydrophobicity by Controlled Sol–Gel Route and Subsequent Atmospheric Pressure Drying” J. Sol-Gel Sci. Tech.49 (2009) 285–292
[14] J. Zarzycki, M. Prassas, J. Phalippou, “Synthesis of Glasses from Gels: The Problem of Monolithic Gels” J Mater. Sci. 17 (1982) 3371-3379
[15] N. Uchida, N. Ishiyama, Z. Kato K. Uematsu, “Chemical Effect of DCCA to the Sol-Gel Reaction Process” J. Mater. Sci. 29 (1994) 5188-5192
[16] E. Pan, N. Pu, Y. Tong, H.Yau, “Application of Two-Photon-Absorption Photopolymerization to Micro-Device Fabrication” Journal of C.C.I.T 34 (2005) 1-16
[17] R.J. Young, P. A .Lovell, Introduction to Polymers, Chapman & Hall,
London,1987
[18] Y.Tomita, N.Suzuki, K. Chikama, “Holographic Manipulation of Nanoparticle
Distribution Morphology in Nanoparticle-Dispersed Photopolymers” Opt. Lett 30 (2005) 839-841
[19] B. L. Booth, “Photopolymer Material for Holography” Appl. Opt. 14 (1975) 593-601
[20] Y.Lin, B.Zhou, K. A. Shiral Fernando, P.Liu,L. F. Allard,Y. Ping Sun, “Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer” Macro. 36 (2003) 7199-7204
[21] E. A. Chandross, W. J. Tomlinson, G.. D. Aumiller, “Latent-imaging Photopolymer Systems” Appl. Opt.17 (1978)566-573
[22] G. J. Steckman, V. Shelkovnikov, V. Berezhnaya, T. Gerasimova, I. Solomatine, D. Psalti, “Holographic Recording in a Photopolymer by Optically
Induced Detachment of Chromophores” Opt. Lett. 25 (2000) 607-609
[23] D. Sabol, M. R. Gleeson, S.Liu, J.T. Sheridan, “Photoinitiation Study of Irgacure
784 in an Epoxy Resin Photopolymer” J. Appl. Phys. 107(2010) 053113-1-8
[24] L. F. J. Schneider ,C. S.C. Pfeifer,S. Consani, S. A. Prahl, J. L. Ferracane, “Influence of Photoinitiator Type on the Rate of Polymerization, Degree of Conversion, Hardness and Yellowing of Dental Resin Composites” Dent. Mater. 24 (2008)1169-1177
[25] M. P Givens, “Introduction to Holography” Amer. J. Phys. 35 (1967)1056-1064
[26] D. Gabor, “A New Microscopic Principle” Nature , 161 (1948) 777-778
[27] E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory” J. Opt. Soc. Amer. 52 (1962) 1123-1128
[28] Y. N. Denisyuk, “Holography and its Prospects” J appl. Spec. 33 (1980) 901-915
[29] P. Hariharan “Optical Holography: Principles, Techniques, and Applications” Cambridge University Press, Cambridge, 1996
[30] H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings” J. Bell Sys. Tech. 48 (1969) 2909-2947
[31] W. J. Gamgogi, W. A. Gerstadt, S. R Mackara, A. M. Weber, “Holographic transmission elements using improved photopolymer films”Proc SPIE V.1555 (1991) 256-267

chap3

[1] Y.M. Chang, S.C. Yoon, M. Han, “Photopolymerization of Aromatic Acrylate Containing Phosphine Oxide Backbone and its Application to Holographic Recording” Opt. Mater. 30 (2007) 662–668.
[2] M.L. Calvo, P. Cheben, Advances in information optics and photonics, in: A.T. Friberg, R. Dandliker (Eds.), SPIE, Washington, 2008, pp. 285–315.
[3] M.L. Calvo, P. Cheben, “Photopolymerizable Sol–Gel Nanocomposites for Holographic Recording” J. Opt. A: Pure Appl. Opt. 11 (2010) 024009-1–024009-11.
[4] A.Murciano, S. Blaya, L. Carretero, M. Ulibarrena, A. Fimia, “Hologram Multiplexing in a Highly Photosensitive Photopolymerizable Material in a Sol-Gel Matrix” Appl. Phys. B 81 (2005) 167–169.
[5] J. H. Chen, C.T. Yang, C.H. Huang, M.F. Hsu, T.R. Jeng, “Study of Optical Properties of Glass-Like Polymer Material for Blue Laser Holographic Optic Data Storage Recording” IEEE Trans. Magn. 45 (2009) 2256–2259.
[6] N. Hayashida, A. Kosuda, J. Yoshinari, “A New Class of Photopolymer for Holographic Data Storage Media Based on Organometallic Matrix” Jpn. J. Appl. Phys. 47 (2008) 5895–5899.
[7] J. Wen, G.L. Wilkes, “Organic/Inorganic Hybrid Network Materials by the
Sol-Gel Approach” Chem. Mater. 8 (1996) 1667–1681.
[8] J.D. Mackenzie, E.P. Bescher, “Structures, Properties and Potential Applications of Ormosils” J. Sol–Gel Sci. Technol. 13 (1998) 371–377.
[9] C.J. Brinker, G.W. Scherer, Sol–gel Science: The Physics and Chemistry of Sol–gel Processing, Academic Press, San Diego, 1990.
[10] S. Lee, Y.C. Jeong, Y. Heo, S. Kim, Y.S. Choi, J.K. Park, “Holographic Photopolymers of Organic/Inorganic Hybrid Interpenetrating Networks for Reduced Volume Shrinkage” J. Mater. Chem. 19 (2009) 1105–1114.
[11] P. Cheben, M.L. Calvo, “A Photopolymerizable Glass with Diffraction Efficiency Near 100% for Holographic Storage” Appl. Phys. Lett. 78 (2001) 1490–1492.
[12] O.M. Matos, M.L. Calvo, J.A. Rodrigo, P. Cheben, F. del Monte, “Diffusion Study in Tailored Gratings Recorded in Photopolymer Glass with High Refractive Index Species” Appl. Phys. Lett. 91 (2001) 141115-1–141115-3.
[13] L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, A. Fimia,“ Acrylamide-N,N’
Methylenebisacrylamide Silica Glass Holographic Recording Material” Opt. Express 12 (2004) 1780–1787.
[14] A. Murciano, S. Blaya, L. Carretero, P. Acebal, M. Perez-Molina, R.F. Madrigal, A. Fimia, “Analysis of Nonuniform Transmission Gratings Recorded in Photopolymerizable Silica Glass Materials” J. Appl. Phys. 104 (2008) 063109-1–063109-10.
[15] M. Serwadczak, S. Kucharski, “Photochromic Gratings in Sol-Gel Hybrid Materials Containing Cyanoazobenzene Chromophores” J. Sol–Gel Sci. Technol. 37 (2006) 57–62.
[16] W.X. Que, X. Yao, W.G. Liu, “Azobenzene-Containing Small Molecules
Organic–Inorganic Hybrid Sol–Gel Materials for photonic applications” Appl. Phys. B 91 (2008) 539–543.
[17] O. Kulikovska, L.M. Goldenberg, L. Kulikovsky, J. Stumpe, “Smart Ionic Sol-Gel-Based Azobenzene Materials for Optical Generation of Microstructures” Chem. Mater. 20 (2008) 3528–3534.
[18] N. Landraud, J. Peretti, F. Chaput, G. Lampel, J.P. Boilot, K. Lahlil, V.I. Safarov, “Near-Field Optical Patterning on Azo-Hybrid Sol–Gel Films” Appl. Phys. Lett. 79 (2001) 4562–4564.
[19] D. Garrot, Y. Lassailly, K. Lahlil, J.P. Boilot, J. Peretti, “Real-Time Near-Field Imaging of Photoinduced Matter Motion in Thin Solid Films Containing Azobenzene Derivatives” Appl. Phys. Lett. 94 (2009) 033303-1–033303-3.
[20] M. Feuillade, C.C. Barghorn, L. Mager, C. Carre, A. Fort, “Photopatterning of Hybrid Sol–Gel Glasses: Generation of Volume Phase Gratings Under Visible Light” Chem. Phys. Lett. 398 (2004) 151–156.
[21] P. Innocenzi, B. Lebeau, “Organic–Inorganic Hybrid Materials for Non-Linear Optics” J. Mater. Chem. 15 (2005) 3821–3831.
[22] W.C. Chen, L.H. Lee, B.F. Chen, C.T. Yen, “Synthesis and Characterization of Poly(methyl silsesquioxane)–Titania Optical Thin Films” J. Mater. Chem. 12 (2002) 3644–3648.
[23] G. Kawamura, S. Sato, H. Muto, M. Sakai, P.B. Lim, K. Watanabe, M. Inoue, A. Matsuda, “AgBr Nanocrystal-Dispersed Silsesquioxane–Titania Hybrid Films for
Holographic Materials” Mater. Lett. 64 (2010) 2648–2651.
[24] M. Stefanescu, M. Stoia, O. Stefanescu, “Thermal and FT-IR Study of the Hybrid Ethylene-Glycol–Silica Matrix” J. Sol–Gel Sci. Technol. 41 (2007) 71–78.
[25] Y.I. Park, M. Nagai, “Proton Exchange Nanocomposite Membranes Based on
3-Glycidoxypropyltrimethoxysilane, Silicotungstic Acid and α-Zirconium Phosphate Hydrate” Solid State Ionics 145 (2001) 149–160.
[26] M.W. Daniels, J. Sefcik, L.F. Francis, A.V. McCormick, “Reactions of a Trifunctional Silane Coupling Agent in the Presence of Colloidal Silica Sols in Polar Media” J. Colloid. Interface. Sci. 219 (1999) 351–356.
[27] Y. Zhang, X.Zhang, H. Ye, B. Xiao, L. Yan, B. Jiang, “A Simple Route to Prepare Crack-Free Thick Antireflective Silica Coatings with Improved
Antireflective Stability” Mater. Lett. 69 (2011) 86-88
[28] D. Dong, N. Wang, X. Liu, W. Xue, W. Hu, “Temperature Dependence of the Dielectric Properties of Mesoporous Silica Flms Prepared by a Sol–Gel Route in the Presence of Polyether Modified Polydimethylsiloxane” J. Mater. Sci. Mater. Electron. 22 (2011) 1667–1673.
[29] S.H. Lin, Y.N. Hsiao, K.Y. Hsu, “Preparation and Characterization of
Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm” J.Opt. A: Pure Appl. Opt. 11 (2009) 024012-1–024012-9.
[30] D. Sabol, M.R. Gleeson, S. Liu, J.T. Sheridan, “Photoinitiation Study of Irgacure 784 in an Epoxy Resin Photopolymer” J. Appl. Phys. 107 (2010) 053113-1-053113-8.

chap4

[1] M.L. Calvo, P. Cheben, “Photopolymerizable Sol–Gel Nanocomposites for Holographic Recording” J Opt A: Pure Appl Opt 11 (2010) 024009-1-11.
[2] N. Hayashida, A. Kosuda, and J. Yoshinari, “A New Class of Photopolymer for Holographic Data Storage Media Based on Organometallic Matrix” Jpn. J. Appl. Phys. 47 (2008) 5895-5899.
[3] S. Lee, Y. C. Jeong, Y. Heo, S. I. Kim, Y. S. Choic, and J. K. Park, “Holographic Photopolymers of Organic/Inorganic Hybrid Interpenetrating Networks for Reduced Volume Shrinkage” J. Mater. Chem. 19 (2009) 1105-1114.
[4] A. Murciano, S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Holographic Reflection Gratings in Photopolymerizable Solgel Materials” Opt. Lett. 31 (2006) 2317-2319.
[5] O, Kulikovska, L.M. Goldenberg, L. Kulikovsky, and J.Stumpe, “Smart Ionic Sol-Gel-Based Azobenzene Materials for Optical Generation of Microstructures” Chem. Mater. 20 (2008) 3528-3534.
[6] S. A. Kuchinsky, V. I. Sukhanov, and M. V. Khazova, “The Principles of Hologram Formation in Capillary Composites” Laser Physics, 3 (1993) 1114-1123.
[7] V. I. Sukhanov, A. M. Kursakova, S. A. Kuchinsky, and E.R. Gavrilyuk, “Sol-Gel Porous Glass as Holographic Medium” J. Sol-Gel Sci. Tech. 8 (1997) 1111-1114.
[8] R. Zarraga, J. Cervantes, C. S. Hernandez, and G.Wheeler, “Effect of the Addition of Hydroxyl-Terminated Polydimethylsiloxane to TEOS-Based Stone Consolidants”J. Cult Herit 11 (2010) 138-144.
[9] J. M. Mosquera, D. M. de los Santos, L. Valdez-Castro, and L. Esquivias, “New Route for Producing Crack-Free Xerogels: Obtaining Uniform Pore Size”J. Non-Cryst Solids 354 (2008) 645-650.
[10] C. S. Hernandeza, M. J. P. Alquizab, P. Salgadoa and J. Cervantesa, “TEOS– Colloidal Silica–PDMS-OH Hybrid Formulation Used for Stone Consolidation” Appl Organometal Chem 24 (2010) 481-488.
[11] Y. M. Chang, S. C Yoon, M Han, “Photopolymerization of Aromatic Acrylate Containing Phosphine Oxide Backbone and its Application to Holographic Recording” Opt. Mater. 30 (2007) 662-668.
[12] S.H. Lin, Y.N. Hsiao, K.Y. Hsu, “Preparation and Characterization of Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm” J.Opt. A: Pure Appl. Opt. 11 (2009) 024012-1–024012-9.
[13] J. H. Chen, C.T. Yang, C.H. Huang, M.F. Hsu, T.R. Jeng, “Study of Optical Properties of Glass-Like Polymer Material for Blue Laser Holographic Optic Data Storage Recording” IEEE Trans. Magn. 45 (2009) 2256–2259.
[14] M. Feuillade, C. C. Barghorn, L. Mager, C. Carre, and A. Fort, “Photopatterning of Hybrid Sol–Gel Glasses: Generation of Volume Phase Gratings Under Visible Light” Chem Phys Lett 398 (2004) 151-156.
[15] H. Oh, J. Kim, and E. Kim “Holographic Recording on Photopolymers Containing Pyrene forEnhanced Fluorescence Intensit” Macromolecules 40 (2008) 7160-7165.
[16] V. Saptari, “Fourier transform spectroscopy instrumentation engineering”, SPIE, 2004, Washington
[17] Science tool on web, see http://www.science-and-fun.de/tools
[18] R. Silverstein, F. Webster. Spectrometric Identification of Organic Compounds, 6th ed .John Wiley & Son, Inc ,New Delhi, 2004
[19] H.J. Jiang, X.C. Yuan, Y. Zhou, Y.C. Chan, and Y.L. Lam, “Single-Step Fabrication of Diffraction Gratings on Hybrid Sol-Gel Glass Using Holographic Interference Lithography” Opt. Comm. 185 (2000) 19-24.
[20] X. Zhang, H. Ye, B. Xiao, L. Yan, H. Lv, and B. Jiang, “Sol-Gel Preparation of PDMS/Silica Hybrid Antireflective Coatings with Controlled Thickness and Durable Antireflective Performance” J. Phys. Chem. C 114 (2010) 19979–19983.
[21] J. Wang, X. Fan, W. Tian, Y. Wang, J. Li, “Ring-Opening Polymerization of γ-
Glycidoxypropyltrimethoxysilane Catalyzed by Multi-Metal Cyanide Catalyst” J Polym. Res. 18 (2011) 2133–2139.
[22] L. Song, W.Hu, H. Zhang, G. Wang, H. Yang, and S. Zhu, “In Vitro Evaluation of Chemically Cross-Linked Shape-Memory Acrylate-Methacrylate Copolymer Networks as Ocular Implants” J. Phys. Chem. B, . 114 (2010) 7172-7178.
[23] C. M. Bertelsen and F. J. Boerio “Effect of Processing Variables on the Solution Characteristics of γ-Glycidoxypropy1trimethoxysilane (Y-GPS)” J. Adhesion, 70 (1999) 259-279.
[24] F. de Buyl and A. Kretschmer “Understanding Hydrolysis and Condensation Kinetics of γ-Glycidoxypropyltrimethoxysilane” J. Adhesion, 84 (2008) 125-142.
[25] K. Kumar, B. Nandan, V. Luchnikov, F. Simon, A. Vyalikh, U. Scheler, M. Stamm “A Novel Approach for the Fabrication of Silica and Silica/Metal Hybrid Microtubes” Chem. Mater.21 (2009) 4282–4287.
[26] J. D. Mackenzie, Q. Huang, T. Iwamoto “Mechanical Properties of Ormosils”
J sol-gel sci tech 7 (1996) 151-161.

chap5

[1] S. H. Rowe and W. T. Welford, “Surface Topography of Non-optical Surfaces by Projected Interference Fringes” Nature 216 (1967) 786-788.
[2] R. Crane, “Interference Phase Measurement” Appl. Opt. 8 (1969) 538-542.
[3] V. Srinivasan, H. C. Liu, M. Halioua, “Automated Phase-Measuring Profilometry of 3-D Diffuse Objects” Appl. Opt. 23 (1984) 3105-3108.
[4] H. C. Liu, W. H. Su, K. Reichard, S.Yin, “Calibration-Based Phase-Shifting Projected Fringe Profilometry for Accurate Absolute 3D Surface Profile measurement” Opt. Comm. 216 (2003) 65-80.
[5] M. Takeda and K. Mutoh, “Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shapes” Appl. Opt. 22 (1983) 3977-3982.
[6] X. Su, and W. Chen, “Fourier Transform Profilometry: A Review” Lasers Eng. 35 (2001) 263-284.
[7] W. H. Su, C. K. Lee, “Three-Dimensional Shape Reconstruction from Images Blurred by Motion” Opt, Eng 48 (2009) 073604-1-073604-6.
[8] U. Spagnolini, “2-D Phase Unwrapping and Instantaneous Frequency Estimation
” IEEE Geoscience and Remote Sensing Society 33 (1995) 579-589.
[9] J. M. Huntley, H. Huntley, “Temporal Phase-Unwrapping Algorithm for Automated Interferogram Analysis” Appl. Opt. 32 (1993) 3047-3052.
[10] H. O. Salder, J. M. Huntley, “Temporal Phase Unwrapping: Application to Surface Profiling of Discontinuous Objects” Appl. Opt. 36 (1997) 2770-2775.
[11] 陳煒仁, ”以繞射元件從事三維形貌量測之研究” 國立中山大學材料科學研究所碩士學位論文,中華民國九十五年六月。
[12] 洪健峰, ”雙條紋投影式體腔內部即時三維形貌量測” 國立中山大學材料與光電科學系碩士學位論文,中華民國九十九年六月。

chap6

[1] 蕭智鴻,”全像術應用於體腔內部之三維形貌量測” 國立中山大學材料科學研究所碩士學位論文,中華民國九十七年六月
[2] W. H. Su, H. Liu, K. Reichard, S. Yin, F. T. S. Yu, “Fabrication of Digital Sinusoidal Gratings and Precisely Controlled Diffusive Flats and Their Application to Highly Accurate Projected Fringe Profilometry” Opt. Eng. 42, (2003) 1730-1740.
[3] W. H. Su, ”Color-Encoded Fringe Projection for 3D Shape Measurements” Opt. Exp.15, (2007) 13167-13181.
[4] E. Ortyl, J.Jaworowska, P.Tajalli S. R. Barille, S. Kucharski, “Photochromic Polymer and Hybrid Materials Containing Azo Methylisoxazole Dye” Soft Mater. 9 (2011) 335–346.
[5] H. Yu ,T. Kobayashi, “Photoresponsive Block Copolymers Containing Azobenzenesand Other Chromophores” Molecules 15 (2010) 570-603.
[6] C. Sanchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle–Photopolymer Composites for Volume Holographic Recording” Adv. Funct. Mater. 15 (2005) 1623–1629.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code