Responsive image
博碩士論文 etd-0720112-191900 詳細資訊
Title page for etd-0720112-191900
論文名稱
Title
局部密集磺酸化聚芳香醚高分子運用於質子交換膜之研究
Locally and Densely Sulfonated Poly(arylene ether)s as Proton Exchange Membrane
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-28
繳交日期
Date of Submission
2012-07-20
關鍵字
Keywords
局部密集磺酸化聚芳香醚高分子、質子導電度、燃料電池、聚芳香醚高分子、質子交換膜
Locally and densely sulfonated polymer, Proton exchange membrane, Fuel cell, Poly(arylene ether)s, Proton conductivity
統計
Statistics
本論文已被瀏覽 5659 次,被下載 0
The thesis/dissertation has been browsed 5659 times, has been downloaded 0 times.
中文摘要
燃料電池之質子交換膜應具備有三大優點:1.微相分離、2.機械性質、3.熱穩定性。參考近年來的文獻結構並結合本實驗室長期發展聚芳香醚高分子多苯環核心結構,本論文合成出一系列局部密集型磺酸化聚芳香醚高分子(Locally and Densely sulfonated polymer)。其中,單體部分,本研究係利用多苯環核心作為二醇單體,稱之為K1、K2和K3;另設計一種含CF3官能基的氟單體K4,經親核性聚縮合反應即可得到聚芳香醚高分子,稱之為KP1、KP2、KP3,最後再藉由不同濃度的磺酸化反應,製作出磺酸化高分子,命名為SKP1、SKP2、SKP3。在此,K1、K2和K3部分由於多苯環提供磺酸化位置因此作為親水端,K4部分則做為疏水端。
在分析方面,NMR結果可得知本論文所合成的高分子結構正確無誤,KP1、KP2、KP3的分子量藉由GPC量測都在兩萬左右;TGA結果顯示,高分子的熱裂解溫度皆在530OC以上,證明此系列的高分子熱穩定性極佳,經磺酸化後SKP1、SKP2、SKP3的熱裂解溫度則隨著磺酸化程度增加而下降,約在200OC~250OC不等。由DSC分析可得知,K1、K2和K3單體隨著苯環數上升而Tg跟著上升,但高分子並沒有測到明顯的吸放熱峰。
質子導電度部分,以SKP2C,IEC為2.23 mequiv / g 、 吸水率為94%時質子導電度68.2 mS / cm為最佳,已與Nafion 117的70 mS / cm相近。
Abstract
The proton exchange membrane fuel cells should have three major advantages: 1. micro-phase separation, 2. mechanical properties and 3. thermal stability. According to the recent literature and the material of core benzene ring poly (arylene ether)s studied by our group, this paper synthesize a series of the locally and densely sulfonated polymer. We use core benzene ring as the diol monomer and the containing CF3 groups as the fluorine monomer to synthesis poly (arylene ether)s via nucleophilic displacement reactions, and then use the different concentrations synthesized sulfonated polymer by sulfonic acid reaction.
According to NMR’s result we confirmed that the structure of synthetic materials is correct. By using GPC we get that the KP1, KP2, and KP3’s molecular weight about 20000 (g/mol) ; The thermal stability up to 530OC for 5% loss in TGA under nithtrogen, to prove thisseries of polymer excellent thermal stability. After sulfonation, SKP1, SKP2 and SKP3’s decomposition temperature decreased about 200OC ~ 250OC ranging with increasing degree of sulfonation. By DSC analysis, K1, K2 and K3 monomer's Tg followed up with the increase of the benzene ring number, however, the polymer does not have any apparent peak.
About the Proton conductive, SKP2C IEC 2.23mequiv / g, water uptake 94%, the highest proton conductivity can be as high as 68.2 mS / cm, has been similar to Nafion 117 of 70 mS / cm.
目次 Table of Contents
摘要 i
目錄 iii
圖目錄 vi
表目錄 vii
第一章 序論 1
1-1前言 1
1-2燃料電池種類 1
1-3質子交換膜燃料電池 3
1-3-2質子傳遞機制 4
1-4質子交換膜種類 6
1-4-1 離子聚合物薄膜(Ionomer membrane) 6
1-4-2 有機/無機混成薄膜 10
1-4-3 酸鹼高分子薄膜 11
1-5 質子交換膜結構的設計 (Polymer Architectures of Proton Exchange Membrane ) 13
1-6 局部密集磺酸化聚芳香醚高分子文獻回顧 17
1-7 研究動機 19
第二章 實驗儀器介紹與原理 20
2-1鑑定分析儀器 20
2-1-1高磁場液態磁核共振儀器(Nuclear Magnetic Resonance,NMR) 20
2-1-2基質輔助雷射脫附游離飛行質譜儀(MALDI TOF/TOF) 20
2-1-3凝膠滲透層析儀(GPC) 21
2-2熱分析儀器 21
2-2-1 熱重量分析儀(Thermogravimetric Analyzer,TGA) 21
2-2-2 熱示差掃描卡量計(Differential Scanning Calorimetr,DSC) 21
2-2-3 熱機械分析儀(Thermal Mechanical Analyzer,TMA) 22
2-3 物理分析 22
2-3-1 尺寸安定性(Dimensional change) 22
2-3-2 吸水率(Water uptake,WU) 22
2-4 化學分析 22
2-4-1 離子交換容量(Ionic-exchange capacity,IEC) 22
2-4-2 λ(每個磺酸根含有多少水分子數量) 23
2-5 微觀分析 23
2-5-1 Transmission Electron Microscope(TEM) 23
2-6 電化學分析 23
2-6-1 AC Impedance 23
第三章 實驗 25
3-1實驗材料 25
3-2實驗流程 27
3-3雙酚單體製備與鑑定 30
3-4氟單體製備與鑑定 36
3-5高分子製備 37
3-6磺酸化高分子製備 39
3-7薄膜製備 40
第四章 結果與討論 41
4-1 鑑定分析 41
4-1-1 GPC 41
4-2 材料熱分析 42
4-2-1 TGA 42
4-2-2 DSC 45
4-3 物理、化學性質分析 47
第五章 結論 50
第六章 參考文獻 51
附錄 56
參考文獻 References
[1] Y. S. Ye, Y. J. Rick, and B. J. Hwang, Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells, Polym., 2012, 4, 913-963.
[2] P. Choi, N. H. Jalani, and R. Datta, Thermodynamics and Proton Transport in Nafion Part II Proton Diffusion Mechanisms and Conductivity, J. Electrochem. Soc., 2005, 152, 123-130.
[3] K. Jiao, X. Li, Water transport in polymer electrolyte membrane fuel cells, Prog. Energy Combust Sci., 2011, 37, 221-291.
[4] M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym Sci., 2000, 25, 1463-1502.
[5] S. R. Klaus, and Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes, Nature mater., 2008, 7, 75-83.
[6] S. Slade, S. A. Campbell, T. R. Ralph, and F. C. Walshc, Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes, J. Electrochem. Soc., 2002, 149, 1556-1564.
[7] S. H. Almeida, and Y. Kawano, Thermal Behavior of Nafion Membranes, J. Therm. Anal. Calorim., 1999, 58, 569-577.
[8] http://www.nuvant.com/products/nafion.html 2012.
[9] R. Devanathan, Recent developments in proton exchange membranes for fuel cells, Energy Environ Sci. , 2008, 1, 101-119.
[10] C. Y. Jung, C. S. Lee and S. C. Yi, Computational analysis of transport phenomena in proton exchange membrane for polymer electrolyte fuel cells, J. Membr. Sci., 2008, 309, 1-6.
[11] M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Alternative Polymer Systems for Proton Exchange Membranes, Chem. Rev., 2004, 104, 4587-4612.
[12] K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci., 2001, 185, 29-39.
[13] K. Miyatake, B. Bae, and M. Watanabe, Fluorene-containing cardo polymers as ion conductive membranes for fuel cells, Polym. Chem., 2011, 2, 1919.
[14] D. S. Kim, G. P. Robertson, Y. S. Kim, and M. D. Guiver, Copoly(arylene ether)s Containing Pendant Sulfonic Acid Groups as Proton Exchange Membranes, Macromol., 2009, 42, 957-963.
[15] P. Jannasch, Recent developments in high-temperature proton conducting polymer electrolyte membranes, Curr. Opin. Colloid Interface Sci., 2003, 8, 96-102.
[16] J. A. Asensio, S. Borros and M. R. Pedro, Proton-Conducting Polymers Based on Benzimidazoles, and Sulfonated Benzimidazoles, J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 3703-3710.
[17] 吳千舜,諸柏仁,燃料電池質子交換膜的最新發展,The Chinese Chem. Soc., 2004, 62, 123-138.
[18] Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C, Chem. Mater. 2003, 15, 4896-4915.
[19] B. P. Tripathi, and V. K. Shahi, Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci., 2011, 36, 945-979.
[20] B. Smitha, S. Sridhar and A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications-a review, J. Membr. Sci., 2005, 259, 10-26.
[21] 陳信龍,高分子之自組裝奈米結構,The Chinese Chem. Soc., 2004, 62, 455-460.
[22] I. W. Hamley, Introduction to Block Copolymers.
[23] L. Rubatat, C. Li, H. Dietsch, A. Nykanen, J. Ruokolainen and R.Mezzenga, Structure-Properties Relationship in Proton Conductive Sulfonated Polystyrene-Polymethyl Methacrylate Block Copolymers (sPS−PMMA), Macromol., 2008, 41, 8130–8137.
[24] E. M. W. Tsang, Z. Zhang, A. C. C. Yang, Z. Shi, T. J. Peckham, R. Narimani, B. J. Frisken, and Steven Holdcroft, Nanostructure, Morphology, and Properties of Fluorous Copolymers Bearing Ionic Grafts, Macromol., 2009, 42, 9467-9480.
[25] D. Chen, S. Wang, M. Xiao, Y. Meng, and A. S. Hay, Novel polyaromatic ionomers with large hydrophilic domain and long hydrophobic chain targeting at highly proton conductive and stable membranes, J. Mater. Chem., 2011, 21, 12068.
[26] T. Higashihara, K. Matsumoto, and M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells, Polym. 2009, 50, 5341-5357.
[27] 何基任,應用於質子交換膜之磺酸化聚芳香醚高分子,國立中山大學光電工程學系研究所碩士論文(2011).
[28] 阮凡軒,新穎雙酚單體合成聚芳香醚高分子在軟性基板上之製備與特性研究,國立中山大學光電工程學系研究所碩士論文(2011).
[29] 吳昇峰,供燃料電池使用之磺酸化聚芳香醚高分子,國立中山大學光電工程學系研究所碩士論文(2010).
[30] 黃冠龍,新穎軟性機板材料之製備與光電特性研究,國立中山大學光電工程學系研究所碩士論文(2008).
[31] W. Y. Huang, B. R. Liaw, M. Y. Chang, Y. K. Han, and P. T. Huang, High Glass-Transition Temperature and Organosoluble Novel Arylene Ether Polymers, Macromol. 2007, 40, 8649-8657.
[32] 陳立偉,氟化2”,3”,5”,6”-四苯基[1,1’;4’,1”;4”,1’’’;4’’’,1’’’’]五聯苯新單體和雙酚反應合成高玻璃轉移溫度和低介電常數之聚苯基醚高分子及其性質研究, 台灣科技大學化學工程系碩士學位論文(2001).
[33] C.H. Park, C, H, Lee, M. D. Guiver, and Y. M. Lee, Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs), Prog. Polym. Sci., 2011, 36, 1443-1498.
[34] K. F. Medzihradszky, J. M. Campbell, M. A. Baldwin, A. M. Falick, P. Juhasz, Marvin L. Vestal, and Alma L. Burlingame, The Characteristics of Peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer, Anal. Chem. 2000, 72, 552-558.
[35] K. A. Mauritz, and R. B. Moore, State of Understanding of Nafion, Chem. Rev., 2004, 104, 4535-4585.
[36] J. J. Camberato, Cation Exchange Capacity - Everything You Want to Know and Much More.
[37] Y. Terazono, P. A. Liddell, V. Garg, G. Kodis, A. Brune,M. Hambourger, A. L. Moore, T. A. Moore, and D. Gust, Artifi cial photosynthetic antenna-reaction center complexes based on a hexaphenylbenzene core, J. Porphyrins Phthalocyanines, 2005, 9: 706-723.
[38] S. Banerjee, G. Maier, and M. Burger, Novel Poly(arylene ether)s with Pendent Trifluoromethyl Groups, Macromol., 1999, 32, 4279-4289.
[39] S. Banerjee, and G. Maier, Novel High Tg High-Strength Poly(aryl ether)s, Chem. Mater., 1999, 11, 2179-2184.
[40] N. Li, S. Y. Lee, Y. L. Liu, Y. M. Lee, and M. D. Guiver, A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers, Energy Environ. Sci., 2012, 5, 5346-5355.
[41] N. Li, S. Li , S. Zhang, J. Wang, Novel proton exchange membranes based on water resistant sulfonated poly[bis(benzimidazobenzisoquinolinones)], J. Power Sources, 2009, 187, 67-73.
[42] J. R. Lee, N.Y. Kim, M. S. Lee, and S.-Y. Lee, SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells, J. Membr. Sci., 2011, 367, 265-272.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.197.212
論文開放下載的時間是 校外不公開

Your IP address is 3.142.197.212
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code