Responsive image
博碩士論文 etd-0720114-121454 詳細資訊
Title page for etd-0720114-121454
論文名稱
Title
漣波電流導向之太陽能電池最大功率追蹤
Maximum Power Point Tracking with Ripple Current Orientation for Photovoltaic Panel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-18
繳交日期
Date of Submission
2014-08-20
關鍵字
Keywords
相位偏移、最大功率追蹤、漣波電流導向、電力電子轉換器、太陽能電池
Boost converter, Maximum power point tracking, Ripple current orientation, Photovoltaic panel, Phase deviation
統計
Statistics
本論文已被瀏覽 5741 次,被下載 66
The thesis/dissertation has been browsed 5741 times, has been downloaded 66 times.
中文摘要
本論文提出一新型太陽能電池最大功率追蹤法,根據太陽能電池之動態特性,利用太陽能電池與電力電子轉換器電路中固有漣波電流、電壓之相位,建立含漣波電流之太陽能電池系統最大功率追蹤控制。由實驗得知,在太陽能電池之漣波電流峰值小於最大功率點電流時,電流及電壓的相位相反。當漣波電流峰直達最大功率點電流,電流與電壓之間開始出現相位偏移,此相位偏移隨著輸出電流增加,峰值超過最大功率點電流而益發顯著。本研究針對太陽能電池之漣波電流與最大功率點電流間之特性,建構最大功率追蹤之控制策略,並設計一相位偵測電路判別輸出電流與電壓間之相位偏移,以微控制器控制轉換器之導通率,達成最大功率追蹤。
與傳統追蹤方法相比,漣波電流導向不須計算太陽能電池之平均輸出電壓、電流及功率,僅偵測輸出電流、電壓間之相位偏移,控制轉換器之導通率即可達成最大功率追蹤,並於不同的照度變化迅速將太陽能電池操作於當下的最大功率點。此外,太陽能電池輸出端無須並聯電解電容,進而排除電解電容使用壽命之問題。本研究建構一小型太陽能實驗系統,設計相位偵測電路及控制策略,驗證漣波電流導向最大功率追蹤速度與精確度。
Abstract
This thesis proposes a novel maximum power point tracking (MPPT) technique on basis of dynamic characteristics of the photovoltaic (PV) panel with a boost converter which is commonly set to step up the voltage level for the load requirement. The boost converter draws a rippled current from the PV panel with designated circuit parameters. Experimental tests reveal that the rippled current and voltage of a PV panel are always out of phase when the peak of the current is less than the current at the maximum power point (MPP), but begins to deviate once the current peak has reached the MPP current.
As compared with conventional methods that measure the average output current, voltage or power of the PV panel to achieve MPPT, the proposed MPPT method with ripple current orientation tracks the MPP based on the detected instantaneous phase deviation of the PV voltage and current. The MPP can be oriented by the peak of the rippled current once the peak current has reached the MPP current. By continuously detecting the phase difference, the PV panel can be operated at the MPP under constant atmosphere condition and can quickly move to the new MPP when the operating condition has been changed. Besides, with the proposed MPPT method, the electrolytic capacitor can be excluded from the output terminal of the PV panel. A laboratory PV system with a phase-difference detection circuit, a sampling circuit, and a micro-controller are set up to verify the feasibility and effectiveness of the MPPT control strategy.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iii
Contents v
List of Figures vii
List of Tables viix
Chapter 1
Introduction 1
1.1 Research Background and Motive 1
1.2 Content Arrangement 3
Chapter 2
Photovoltaic Panel 4
2.1 Operation and Construction of Photovoltaic Panel 4
2.2 Static Characteristics and Maximum Power Point 6
2.3 Dynamic Characteristics of Photovoltaic Panel 9
2.4 Maximum Power Point Tracking Methods 13
2.4.1 Methods with Power Feedback Control 13
2.4.2 Voltage-Based & Current-Based Methods 15
2.4.3 Ripple Correlation Control 17
2.4.4 Methods with Mathematic Algorithm 18
Chapter 3
MPPT Method with Ripple Current Orientation 22
3.1 Arrangements of Laboratory Photovoltaic System 22
3.2 Concept of Proposed MPPT Method 25
3.2.1 Identification of MPP Current 25
3.2.2 Indication of Irradiance Variation 27
3.3 Tracking Strategy of Proposed MPPT Method 28
3.3.1 MPP Orientation 29
3.3.2 MPPT with Ambient Condition Variations 30
Chapter 4
Experimental Implementation and Verification 34
4.1 MPPT Control Unit of Photovoltaic System 34
4.1.1 Phase-Difference Detection Circuit 35
4.1.2 Voltage and Current Sampling 41
4.1.3 Micro-controller 43
4.2 Control Scenario of MPPT 44
4.2.1 Initial Tracking Period 45
4.2.2 Tracking with Variable Irradiance Levels 46
4.3 Experimental Verifications 48
4.3.1 Starting Transient of MPPT 48
4.3.2 MPPT with Variable Irradiance Conditions 50
4.3.3 Tracking Accuracy 53
Chapter 5
Conclusions and Discussions 54
5.1 Conclusions 54
5.2 Prospects of Improvement 55
References 57
參考文獻 References
[1] F. Blaabjerg, Y. Yang, and K. Ma, “Power Electronics - Key Technology for Renewable Energy Systems - Status and Future,” in Proc. IEEE Electric Power and Energy Conversion Systems Conference, pp. 1-6, Oct. 2013.
[2] S. V. Dhople, A. Davoudi, G. Nilles, and P. L. Chapman, “Maximum Power Point Tracking Feasibility in Photovoltaic Energy Conversion Systems,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2294-2299, Feb. 2010.
[3] K. Kobayashi, H. Matsuo, and Y. Sekine, “Novel Solar-Cell Power Supply System Using the Multiple-Input DC-DC Converter,” in Proc. IEEE Telecommunications Energy Conference, pp. 797-802, Oct. 1998.
[4] T. Y. Kim, H. G. Ahn, S. K. Park, and Y. K. Lee, “A Novel Maximum Power Point Tracking Control for Photovoltaic Power System under Rapidly Changing Solar Radiation,” in Proc. IEEE International Symposium on Industrial Electronics (ISIE), vol. 2, pp. 1011-1014, June 2001.
[5] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. on Energy Conversion, vol. 22, pp. 439-449, June 2007.
[6] V. V. R. Scarpa, S. Buso, and G. Spiazzi,“ Low-Complexity MPPT Technique Exploiting the PV Module MPP Locus Characterization,” IEEE Trans. on Industrial Electronics, vol. 56, pp. 1531-1538, May 2009.
[7] B. Subudhi and R. Pradhan, “A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems,” IEEE Trans. on Sustainable Energy, vol. 4, pp. 89-98, Jan. 2013.
[8] A. Pandey, N. Dasgupta, and A. K. Mukerjee, “A Simple Single-Sensor MPPT Solution,” IEEE Trans. on Power Electronics, vol. 22, pp. 698-700, Mar. 2007.
[9] N. S. D'Souza, L. A. C. Lopes, and X. Liu, “An Intelligent Maximum Power Point Tracker Using Peak Current Control,” in Proc. IEEE Power Electronics Specialists Conference (PECS), pp. 172-177, June 2005.
[10] A. Safari and S. Mekhilef, “Simulation and Hardware Implementation of Incremental Conductance MPPT with Direct Control Method Using Ćuk Converter,” IEEE Trans. on Industrial Electronics, vol. 58, pp. 1154-1161, Apr. 2011.
[11] G. S. Seo, K. C. Lee, and B. H. Cho, “A New DC Anti-Islanding Technique of Electrolytic Capacitor-Less Photovoltaic Interface in DC Distribution Systems,” IEEE Trans. on Power Electronics, vol. 28, pp. 1632-1641, Apr. 2013.
[12] P. Midya, P. T. Krein, R. J. Turnbull, R. Reppa, and J. Kimball, “Dynamic Maximum Power Point Tracker for Photovoltaic Applications,” in Proc. IEEE Power Electronics Specialists Conference (PESC), vol. 2, pp. 1710 -1716, June 1996.
[13] P. T. Krein, “Ripple Correlation Control, with Some Applications,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5, pp. 283-286, May and June 1999.
[14] T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, and P. Midya, “Dynamic Maximum Power Point Tracking of Photovoltaic Arrays Using Ripple Correlation Control,” IEEE Trans. on Power Electronics, vol. 21, pp. 1282-1291, Sep. 2006.
[15] J. W. Kimball and P. T. Krein, “Digital Ripple Correlation Control for Photovoltaic Applications,” in Proc. IEEE Power Electronics Specialists Conference (PECS), pp. 1690-1694, June 2007.
[16] S. L. Lin, G. B. Wu, W. C. Liu, and C. S. Moo, “Ripple Current Effect on Output Power of Solar-Cell Panel,” in Proc. IEEE International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1-5, Nov. 2012.
[17] B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE Journal of Lightwave Technology, vol. 24, pp. 4600-4615, Dec. 2006.
[18] D. Verma, T. O. Saetre, and O. M. Midtgard, “Review on Up/Down Conversion Materials for Solar Cell Application,” in Proc. IEEE Photovoltaic Specialists Conference (PVSC), pp. 2608-2613, June 2012.
[19] R. Kopecek, J. Libal, T. Buck, K. Peter, K. Wambach, M. Acciad, S. Binetti, L. J. Geerligs, and P. Fath, “N-type Multicrystalline Silicon: Material for Solar Cell Processes with High Efficiency Potential,” in Proc. IEEE Photovoltaic Specialists Conference (PVSC), pp. 1257-1260, Jan. 2005.
[20] J. S. Im, J. W. Jeon, S. Park, Y. Lee, and K. S. Lim, ”Improvement of Amorphous Silicon Solar Cell Performance by Inserting a Tungsten Oxide Layer between Zinc Oxide and P-Type Amorphous Silicon Carbide,” in Proc. IEEE Photovoltaic Specialists Conference (PVSC), pp. 612-615, June 2011.
[21] G. M. S. Azevedo, M. C. Cavalcanti, K. C. Oliveira, F. A. S. Neves, and Z. D. Lins, “Evaluation of Maximum Power Point Tracking Methods for Grid Connected Photovoltaic Systems,” in Proc. IEEE Power Electronics Specialists Conference (PESC), pp. 1456-1462, June 2008.
[22] N. D. Benavides and P. L. Chapman, “Modeling the Effect of Voltage Ripple on the Power Output of Photovoltaic Modules,” IEEE Trans. on Industrial Electronics, vol. 55, pp. 2638-2643, July 2008.
[23] S. Jain and V. Agarwal, “A New Algorithm for Rapid Tracking of Approximate Maximum Power Point in Photovoltaic Systems,” IEEE Power Electronics Letters, vol. 2, pp. 16-19, Mar. 2004.
[24] D. Shmilovitz, “On the Control of Photovoltaic Maximum Power Point Tracker via Output Parameters,” in Proc. IET Electric Power Applications, vol. 152, pp. 239-248, Mar. 2005.
[25] O. Wasynezuk, “Dynamic Behavior of a Class of Photovoltaic Power Systems,” IEEE Trans. on Power Apparatus and Systems, vol. PAS-102, pp. 3031-3037, Sep. 1983.
[26] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Trans. on Power Electronics, vol. 20, pp. 963-973, July 2005.
[27] O. Palizban and S. Mekhilef, “Modeling and Control of Photovoltaic Panels Base Perturbation and Observation MPPT Method,” in Proc. IEEE International Conference on Control System, Computing and Engineering, pp. 393-398, Nov. 2011.
[28] G. J. Kish, J. J. Lee, and P. W. Lehn, “Modeling and Control of Photovoltaic Panels Utilising the Incremental Conductance Method for Maximum Power Point Tracking,” in Proc. IET Renewable Power Generation, vol. 6, pp. 259-266, July 2012.
[29] J. Ahmad, “A Fractional Open Circuit Voltage Based Maximum Power Point Tracker for Photovoltaic Arrays,” in Proc. IEEE International Conference on Software Technology and Engineering, pp. V1247-V1250, Oct. 2010.
[30] B. Subudhi and R. Pradhan, “Characteristics Evaluation and Parameter Extraction of a Solar Array based on Experimental Analysis,” in Proc. IEEE International Conference on Power Electronics and Drive Systems (PEDS), pp. 340-344, Dec. 2011.
[31] T. O. Noguchi, S. Togashi, and R. Nakamoto, “Short-Current Pulse-Based Maximum-Power-Point Tracking Method for Multiple Photovoltaic-and- Converter Module System,” IEEE Trans. on Industrial Electronics, vol. 49, pp. 217-223, Feb. 2002.
[32] D. P. Quoc, Q. N. Nhat, P. L. Minh, K. L. Dinh, V. N. T. Dan, A. N. Bao, and H. H. Lee, “The New Combined Maximum Power Point Tracking Algorithm Using Fractional Estimation in Photovoltaic Systems,” in Proc. IEEE International Conference on Power Electronics and Drive Systems (PEDS), pp. 919-923, Dec. 2011.
[33] N. Diaz, A. Luna, and O. Duarte, “Improved MPPT Short-Circuit Current Method by a Fuzzy Short-Circuit Current Estimator,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), pp. 211-218, Sep. 2011.
[34] S. Chun and A. Kwasinski, “Analysis of Classical Root-Finding Methods Applied to Digital Maximum Power Point Tracking for Sustainable Photovoltaic Energy Generation,” IEEE Trans. on Power Electronics, vol. 26, pp. 3730-3743, Dec. 2011.
[35] D. Petreuş, Ş. Dărăban, M. Cirstea, T. Pătărău, and R. Etz, “A Novel Implementation of a Maximum Power Point Tracking System with Digital Control,” in Proc. IEEE International Symposium on Industrial Electronics (ISIE), pp. 977-982, June 2011.
[36] A. Muhtaroglu, “A Novel Digital MPPT Control Architecture for Renewable System Integration,” in Proc. International Conference on Sustainable Energy Technologies, pp. 1-4, Dec. 2010.
[37] R. M. Hilloowala and A. M. Sharaf, “A Rule-Based Fuzzy Logic Controller for a PWM Inverter in Photovoltaic Energy Conversion Scheme,” in Proc. IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 762-769, Oct. 1992.
[38] B. M. Wilamowski and X. Li, “Fuzzy System Based Maximum Power Point Tracking for PV System,” in Proc. IEEE Annual Conference of the Industrial Electronics Society (IECON), vol. 4, pp. 3280-3284, Nov. 2002.
[39] T. L. Kottas, Y. S. Boutalis, and A. D. Karlis, “New Maximum Power Point Tracker for PV Arrays Using Fuzzy Controller in Close Cooperation with Fuzzy Cognitive Networks,” IEEE Trans. on Energy Conversion, vol. 21, pp. 793-803, Sep. 2006.
[40] T. Hiyama, S. Kouzuma, and T. Imakubo, ”Identification of Optimal Operating Point of PV Modules Using Neural Network for Real Time Maximum Power Tracking Control,” IEEE Trans. on Energy Conversion, vol. 10, pp. 360-367, June 1995.
[41] M. Veerachary, T. Senjyu, and K. Uezato, “Neural-Network-Based Maximum- Power-Point Tracking of Coupled-Inductor Interleaved-Boost-Converter-Supplied PV System Using Fuzzy Controller,” IEEE Trans. on Industrial Electronics, vol. 50, pp. 749-758, Aug. 2003.
[42] S. Premrudeepreechacham and N. Patanapirom, “Solar-Array Modeling and Maximum Power Point Tracking Using Neural Networks,” in Proc. IEEE Power Tech Conference., vol. 2, pp. 53-68, June 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code