Responsive image
博碩士論文 etd-0720114-173511 詳細資訊
Title page for etd-0720114-173511
論文名稱
Title
內嵌式銲接工具應用於摩擦攪拌銲接過程熱傳導與材料流動之理論與實驗研究
Theoretical and Experimental Studies on the Heat Transfer and Material Flow during the Friction Stir Welding Process using an Embedded-rod Tool
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-28
繳交日期
Date of Submission
2014-08-20
關鍵字
Keywords
無探針、熱傳導、摩擦攪拌銲接、經驗公式、材料流動行為
pinless, heat transfer, empirical equations, material flow, friction stir welding
統計
Statistics
本論文已被瀏覽 5644 次,被下載 714
The thesis/dissertation has been browsed 5644 times, has been downloaded 714 times.
中文摘要
本研究提出一摩擦模型,探討純肩部工具與內嵌式工具在摩擦攪拌銲接過程中之熱傳導現象與材料流動行為,在相同的銲接情況下,比較兩者之模擬結果,結果顯示內嵌式工具相較於純肩部工具,介面0溫度較高,材料攪動深度明顯較深,範圍較廣,而達到更優之銲接強度。同時預測工具與試片介面間之滯滑比,配合實驗溫度量測及剖面觀察材料流動結果,以驗證理論模型之正確性。模擬結果顯示在相同工具擠壓力下,轉速越高,接觸面的滯滑比越大;在相同工具轉速下,擠壓力量越大,接觸面的滯滑比越大。同時實驗所觀察之攪拌區深度與範圍,與理論解析之深度與範圍接近,內嵌式工具點銲之材料流動速率與範圍皆遠大於純肩部工具。工具進給速度加快時,試片整體溫度隨之降低,工具前方之溫度低於工具後方之溫度,前進邊之溫度高於後退邊之溫度,而材料流動速率與範圍隨著進給速度的增加而減少,工具後方之材料流動速度遠高於工具前方之材料流動速度。最後將純肩部工具與嵌入式工具在不同擠壓力量、轉速與進給速度下之試片表面最大溫升,以最小平方誤差法,計算出試片表面最大溫升經驗公式,以便參考。
Abstract
A friction model is proposed to investigate the heat transfer and the material flow during the friction stir welding (FSW) process using a plain tool and an embedded-rod tool. Results show that under identical welding parameters, the embedded-rod tool has higher interface temperature with larger range of material flow than that of plain tool. The stick/slip ratio between the tool and the specimen is predicted. The theoretical model is verified by measuring the histories of the temperature with examining the observations on the cross-section of specimens experimentally. Theoretical results show that the stick/slip ratio increases with increasing rotational speed under a certain of downward force; the stick/slip ratio increases with increasing downward force under a certain of rotational speed. The computational results of the depth and range of stir zone are in very good agreement with the observations from the experiments. The material flow speed for the embedded tool is much larger than that for the plain tool using the spot welding. With increasing weld speed, the weld temperature decreases, and the temperature in front of the tool is lower than that behind the tool. The temperature at the retreating side is slightly higher than that at the advancing side. Material flow speed and range decrease with increasing weld speed and material flow speed in front of the tool is significantly higher than that behind the tool. The empirical equations of maximum interface temperature rises are obtained by analyzing the maximum interface temperature rises under different downward force, rotational speed and weld speed for the plain tool and the embedded-rod tool using the method of least squares.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 摩擦攪拌銲接概論 1
1.2 文獻回顧 2
1.3 研究目的 5
1.4 論文架構 6
第二章 理論模型 7
2.1 銲接工具種類 7
2.2 三維圓柱座標系 8
2.3 熱傳模型 9
2.4 黏度模型 11
2.5 材料塑性變形產熱 14
2.6 材料塑性流動模型 15
2.7 試片上表面速度與溫度之計算 17
2.8 有限差分法 18
第三章 結果與討論 23
3.1 工具種類對材料溫度與流動速度的影響 24
3.2 驗證點銲穩態試片溫度分布與材料流動範圍之計算結果 28
3.3 工具擠壓力量對材料溫度與流動速度的影響 32
3.4 工具轉速對材料溫度與流動速度的影響 39
3.5 工具進給速度對材料溫度與流動速度的影響 46
3.6 預測試片表面最大溫升量 60
第四章 結論 66
4.1 結論 66
4.2 未來展望 67
參考文獻 68
參考文獻 References
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith, and C. Dawes, Internationl Patent Application no PCT/GB92/ 02203 and GB Patent Application no. 9125978.9. 1991.
[2] Y. Chao and X. Qi, Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. J. Mater. Proc. Mfg. Sci., 1998. 7: p. 215-223.
[3] Ø. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys. Metallurgical and Materials Transactions A, 2001. 32A: p. 1189-1200.
[4] M. Song and R. Kovacevic, Numerical and experimental study of the heat transfer process in friction stir welding. Proc. Instn Mech. Engrs, 2003. 217 Part B: J. Engineering Manufacture: p. 73-85.
[5] M. Song and R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation. International Journal of Machine Tools & Manufacture, 2003. 43: p. 605-615.
[6] H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding. Modeling Simul. Mater. Sci. Eng., 2004. 12: p. 143-157.
[7] P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, and D. Allehaux, Mechanical and thermal modelling of Friction Stir Welding. Jorunal of Materials Processing Technology, 2006. 171: p. 348-357.
[8] R. Nandan, B. Prabu, A. De, and T. DebRoy, Improving Reliability of Heat Transfer and Materials Flow Calculations during Friction Stir Welding of Dissimilar Aluminum Alloys. Welding Journal, 2007. 86: p. 313-322.
[9] R. Nandan, G.G. Roy, and T. DebRoy, Numerical Simulation of Three Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding. Metallurgical and Materials Transactions A, 2006. 37A: p. 1247-1259.
[10] R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Three-dimensional heat and material flow during friction stir of mild steel. Acta Materialia 2007. 55: p. 883-895.
[11] B.C. Liechty and B.W. Webb, Modeling the frictional boundary condition in friction stir welding. International Journal of Machine Tools & Manufacture, 2008. 48: p. 1474-1485.
[12] A. Arora, R. Nandan, A.P. Reynolds, and T. DebRoy, Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scripta Materialia, 2009. 60(1): p. 13-16.
[13] P. Upadhyay and A.P. Reynolds, Effects of thermal boundary conditions in friction stir welded AA7050-T7 sheets. Materials Science and Engineering A, 2010. 527: p. 1537-1543.
[14] C.M. Sellars and W.J. McTegart, On the mechanism of hot deformation. Acta Metall, 1966. 14: p. 1136-1138.
[15] O.C. Zienkiewicz and I.C. Cormeau, Vis-co-plasticity solution by finite- element process. Arch Mech, 1972. 24: p. 872-889.
[16] H.S. Kong and M.F. Ashby, Friction-heating maps and their applications. MRS Bull, 1991. 16: p. 41-48.
[17] J.A. Khan, L. Xu, and Y.J. Chao, Prediction of nugget development during resistance spot welding using coupled thermal-electrical-mechanical model. Sci Technol Weld Join, 1999. 4: p. 201-207.
[18] Z. Deng, M.R. Lovell, and K.A. Tagavi, Influence of material properties and forming velocity on the interfacial slip characteristics of cross wedge rolling. Manuf Sci Eng, 2001. 123: p. 647-653.
[19] S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite element simulation of material flow in friction stir welding. Sci Technol Weld Join, 2001. 6(3): p. 191-193.
[20] A. Kumar and T. DebRoy, Guaranteed fillet weld geometry from heat transfer model and multivariable optimization. Int J Heat Mass Transfer, 2004. 47(26): p. 5793-5806.
[21] A.K. A, W. Zhang, and T. DebRoy, Improving reliability of modelling heat and fluid flow in complex gas metal arc fillet welds. Part I: An engineering physics model. J Phys D: Appl Phys, 2005. 38: p. 119-126.
[22] A. De and T. DebRoy, Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of un-certain parameters. Weld J., 2005. 84: p. 101-112.
[23] A. De and T. DebRoy, Probing unknown welding parameters from convective heat transfer calculation and multivariable optimization. J Phys D Appl Phys, 2006. 37(1): p. 140-150.
[24] R. Nandan, T. Debroy, and H.K.D.H. Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties. Progress in Materials Science, 2008. 53(6): p. 980-1023.
[25] 力偉倫, 摩擦模型應用於摩擦攪拌銲接過程熱傳導與材料流動之理論與實務研究, 機械與機電研究所 2013, 國立中山大學.
[26] B. Bhushan, Transient Conditions, in Introduction to Tribology. 2002. p. 297-297.
[27] A. Bastier, M.H. Maitournam, K.D. Van, and F. Roger, Steady State Thermomechanical Modelling of Friction Stir Welding. Science and Technology of Welding and Joining, 2001. 11(3): p. 278-288.
[28] T. Sheppard and D.S. Wright, Met. Tech., 1979. 6: p. 215-223.
[29] O.C. Zienkiewicz and I.C. Cormeau, Int J Numer Methods Eng, 1974. 8: p. 821-845.
[30] M. Khonsari and E.R. Booser, Applied Tribology Bearing Design and Lubrication. 2001, United States of America: A Wiley-Interscience.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code