Responsive image
博碩士論文 etd-0720114-180927 詳細資訊
Title page for etd-0720114-180927
論文名稱
Title
以即時定量PCR評估含氯有機物之生物整治效益
Use of quantitative real-time PCR to evaluate the effectiveness of enhanced biodegradation on chlorinated organic contaminants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-28
繳交日期
Date of Submission
2014-08-21
關鍵字
Keywords
變性梯度膠體電泳、即時定量PCR、生物整治法、三氯乙烯、還原脫氯作用
reductive dechlorination, quantitative real-time PCR, denaturing gradient gel electrophoresis, bioremediation, trichlorethylene
統計
Statistics
本論文已被瀏覽 5697 次,被下載 0
The thesis/dissertation has been browsed 5697 times, has been downloaded 0 times.
中文摘要
本研究為利用分子生物學技術來評估厭氧現地生物整治含氯有機污染物之成效。本研究於國內某含氯有機污染場址注入乳化型釋碳基質(emulsified carbon-releasing substrate, ECS),以促使現地微生物生長,同時使地下水中釋碳基質經厭氧分解產生之氫氣來加強含氯有機物之脫氯作用。抽取污染地下水中細菌的DNA,並針對其中細菌16S rRNA基因的特定區段進行PCR分析,再利用變性梯度膠體電泳(denaturing gradient gel electrophoresis, DGGE)進行菌相分析。為了瞭解Dehalococcoides的脫氯作用過程,利用即時定量PCR(quantitative real-time PCR)來偵測現地環境中具有脫氯作用菌群及還原脫氯功能基因的消長變化。研究結果顯示,整治期間現場監測井溫度大致都維持在25-30℃之間。注入釋碳基質後,總有機碳(total organic carbon, TOC)濃度遠高於未添加ECS前的背景值。而TOC慢慢被微生物利用而形成緩慢且穩定下降趨勢,亦顯示ECS為緩釋性基質且可提供微生物生長所需的營養源。在第一次注入ECS後,所有注藥井的氧化還原電位(oxidation-reduction potential, ORP)及溶氧(dissolved oxygen, DO)皆有呈現下降的趨勢呈還原狀態。場址中主要之污染物三氯乙烯下降至分析儀器的偵測極限(< 1 μg/L),且場址地下水樣中亦測得三氯乙烯之分解副產物(二氯乙烯及氯乙烯)。依還原脫鹵酶基因的TceA、VcrA及BvcA含量變化與含氯有機物汙染物濃度的變化結果得知,此結果符合微生物於厭氧環境還原脫氯降解含氯有機物的途徑。在定量分析方面,雖然Dehalococcoides菌量會受到pH影響,但是在整治過程中仍能維持一定的菌量,此現象可說明此類菌群在現地厭氧脫氯生物復育整治中扮演重要的角色。現地地下水微生物菌相鑑定與分析結果發現,脫氯相關菌種有51種,其中Acidovorax spp.、Alcaligenes spp.、Clostridium spp.、Dehalobacter spp.、Dehalococcoides spp.、Desulfuromonas spp.、Enterobacter spp.、Hydrogenophaga spp.、Methylosinus spp.、Pseudomonas spp.、Ralstonia spp.、Rhodococcus spp.、Stenotrophomonas spp.、Variovorax spp.及Wautersia spp.等菌種。而檢測出之厭氧生物整治相關菌種:(1)脫硝作用相關的菌種有54種;(2)四價錳及三價鐵還原相關作用的菌種有12種;(3)硫酸鹽還原相關作用的菌種有9種;(4)氫氣產生的相關的菌種有Clostridium spp.及Ruminococcus spp.等。這些功能菌種的存在能幫助環境趨向厭氧且可促進微生物進行還原脫氯反應。由於地下水環境之異質性,ECS灌注區域仍有好氧或缺氧環境,因此汙染場址中也鑑定出13種具有與利用甲烷相關的菌種。此類甲烷氧化菌利用甲烷作為碳源,而限制了大量甲烷釋放於大氣中。本研究結果得知,注入ECS後,對污染場址的整治達到一定效果,也證實加強式生物整治法在含氯有機汙染物污染場址實行是可行的方法。
Abstract
The goal of this study is using molecular biology techniques to assess the effectiveness of anaerobic in situ bioremediation of chlorinated organic contaminants. In this study, a chlorinated organic contaminated site was injected with emulsified carbon-releasing substrate (ECS) to promote in situ microbial growth, as well as to release hydrogen generated by anaerobic decomposition of the ECS to enhance dechlorination of chlorinated organic compounds. DNAs were extracted from groundwater samples to analyze the microbial communities by using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). In order to understand the role of Dehalococcoides species in the dechlorination process, quantitative real-time PCR was used to detect the presence and shift of these bacteria and associated dehalogenase genes. The results showed all temperatures of the monitoring wells were generally maintained at 25-30℃ during this study. After ECS was injected, the total organic carbon (TOC) raised and its concentration was much higher than the background. The TOC was consumed gradually by microorganisms, indicated that ECS was a sustained-release matrix and could provide a source of nutrients for microbial growth. At the beginning of ECS injection, oxidation-reduction potential and dissolved oxygen of all injection wells slowly decreased to reduced state that could enhance the following anaerobic bioremediation. The trichloroethylene decreased below the detection limit (<1 μg/L). The trichlorethylene-degradation byproducts, dichloroethenes and vinyl chloride, were found in groundwater samples. The expression of reductive dehalogenase genes (TceA, VcrA and BvcA) were consistent with the concentration of chlorinated organic contaminants indicated that reductive dechlorination process was developed in this anaerobic environment. In quantitative analysis, the amount of Dehalococcoides species was affected by pH, but still maintained a constant number during the remediation processes, demonstrated that Dehalococcoides species played an important role in anaerobic dechlorination. Fifty-one dechlorination bacterial species were identified from the groundwater, including Acidovorax spp., Alcaligenes spp., Clostridium spp., Dehalobacter spp., Dehalococcoides spp., Desulfuromonas spp., Enterobacter spp., Hydrogenophaga spp., Methylosinus spp., Pseudomonas spp., Ralstonia spp., Rhodococcus spp., Stenotrophomonas spp., Variovorax spp., Wautersia spp. and so on. Other anaerobic bioremediation related bacteria species found including: (1) 54 denitrifying associated species; (2) 12 manganese(IV) reduction and iron(III) reduction species; (3) 9 sulfate-reducing species; (4) Clostridium spp. and Ruminococcus spp. that could generate hydrogen. All these bacteria could create an anaerobic environment and promote the reductive dechlorination. Due to the diversity of groundwater environment, the ECS injection area still possesses both aerobic and anoxic regions. Thirteen bacterial methanotrophs were recognized from the groundwater. These methanotrophic bacteria consumed methane as their carbon source and cut down the release of methane into the atmosphere. In conclusion, the injection of ECS is an effective and feasible bioremediation way to treat chlorinated organic contaminated sites.
目次 Table of Contents
審定書 i
誌謝 ii
中文摘要 iii
Abstract v
壹、 前言 1
1.1 研究緣起 1
1.2 三氯乙烯之性質及管制標準 2
1.3 含氯有機物整治方法 3
1.3.1 乳化型釋碳基質(emulsified carbon-releasing substrate, ECS) 4
1.4 微生物分解含氯有機物的反應機制 4
1.4.1 含氯有機物的好氧分解 4
1.4.2 含氯有機物的厭氧分解 5
1.5 現地生物復育機制 6
1.6 環境監測 7
1.7 分子生物學監測技術 7
1.7.1 16S rDNA 7
1.7.2 PCR-DGGE 8
1.7.3 Real-time PCR (qPCR) 9
1.8 研究目的 10
貳、 材料與方法 12
2.1 研究場址及整治方法 12
2.2 水質參數監測 13
2.3 樣品微生物的genomic DNA萃取 13
2.4 以PCR-DGGE進行菌相分析 14
2.4.1 聚合酶連鎖反應(PCR) 14
2.4.2 變性梯度膠體電泳(DGGE)分析 14
2.5 菌種分析與鑑定 16
2.5.1 聚合酶連鎖反應(PCR) 16
2.5.2 回收PCR產物 16
2.5.3 Ligation 17
2.5.4 Transformation 17
2.5.5 篩選及確認藍白菌落 17
2.5.6 定序比對分析 18
2.6 即時聚合酶鏈鎖反應(Real-time PCR) 18
2.6.1 基因片段篩選 18
2.6.2 建立標準曲線 18
2.6.3 配置反應液 18
2.6.4 環境中樣品數量 19
參、 結果與討論 20
3.1 水質參數、Dehalococcoides菌屬及不同還原脫鹵酶基因的監測分析 20
3.1.1 水溫變化 20
3.1.2 TOC含量變化 20
3.1.3 DO及ORP數值變化 21
3.1.4 硫化氫(H2S)及甲烷(CH4)濃度變化 22
3.1.5 pH與Dehalococcoides(Dhc)菌屬數值變化 22
3.1.6 含氯有機物濃度及不同還原脫鹵酶(RDase)基因數量變化 23
3.1.7 Dhc菌屬與RDase基因數量變化 25
3.2 微生物菌相鑑定與分析 26
3.2.1 微生物菌相分析 26
3.2.2 微生物菌相鑑定 26
肆、 結論 30
伍、 參考文獻 33
圖附錄 62
表附錄 81
參考文獻 References
行政院環保署, 2014a, http://sgw.epa.gov.tw/public/Default.aspx。
行政院環保署, 2014b, http://sgw.epa.gov.tw/public/07_Pollutant.asp。
行政院環保署, 2014c, http://wq.epa.gov.tw/WQEPA/Code/Business/Statutory.aspx?Tabs=3。
行政院環保署, 2014d, http://wqp.epa.gov.tw/ecological/ClassRoom.aspx?Num=01。
化學品全球調和制度, 2013, http://ghs.cla.gov.tw/CHT/intro/search.aspx。
Achenbach, L.A., Michaelidou, U., Bruce, R.A., Fryman, J. and Coates, J.D., 2001, Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position, International Journal of Systematic and Evolutionary Microbiology 51:527-533.
Arciero, D., Vannelli, T., Logan, M. and Hooper, A.B., 1989, Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea, Biochemical and Biophysical Research Communications 159:640-643.
Ahmed, B., Cao, B., McLean, J.S., Ica, T., Dohnalkova, A., Istanbullu, O., Paksoy, A., Fredrickson J.K. and Beyenal H., 2012, Fe(III) Reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from hanford 300A subsurface sediments, Applied and Environmental Microbiology 78:8001-8009.
Akhtar, M.S., Chali, B. and Azam, T., 2013, Bioremediation of arsenic and lead by plants and microbes from contaminated soil, Research in Plant Sciences 1:68-73.
Antony, C.P., Kumaresan, D., Ferrando, L., Boden, R., Moussard, H., Fernandez Scavino, A., Shouche, Y.S. and Murrell, J.C., 2010, Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact, The ISME Journal 4:1470-1480.
Arp, D.J., Yeager, C.M. and Hyman, M.R., 2001, Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene, Biodegradation 12:81-103.
Baby, V., Rajakumar S. and Ayyasamy, P.M., 2013, Reduction of ferric iron in synthetic medium amended with acetate as a sole carbon source, International Journal of Current Microbiology and Applied Sciences 2:501-513.
Barth, K.R., Isabella, V.M. and Clark, V.L., 2009, Biochemical and genomic analysis of the denitrification pathway within the genus Neisseria, Microbiology 155:4093-4103.
Balch, W.E., Schoberth, S., Tanner, R.S. and Wolfe, R.S., 1977, Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria, International Journal of Systematic Bacteriology 27:355-361.
Baek, S.H., Hartsock, A. and Shapleigh, J.P., 2008, Agrobacterium tumefaciens C58 uses ActR and FnrN to control nirK and nor expression, Journal of Bacteriology 190:78-86.
Bagley, D.M. and Gossett, J.M., 1990, Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures, Applied and Environmental Microbiology 56:2511-2516.
Becker, K., Harmsen, D., Mellmann, A., Meier, C., Schumann, P., Peters, G. and von Eiff, C., 2004, Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species, Journal of Clinical Microbiology 42:4988-4995.
Bertilsson, S., Cavanaugh, C.M. and Polz, M.F., 2002, Sequencing-independent method to generate oligonucleotide probes targeting a variable region in bacterial 16S rRNA by PCR with detachable primers, Applied and Environmental Microbiology 68:6077-6086.
Bedard, C. and Knowles, R., 1989, Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers, Microbiological Reviews53:68-84.
Borden, R.C. and Lieberman M.L., 2009, Passive bioremediation of perchlorate using emulsified edible oils, In Situ Bioremediation of Perchlorate in Groundwater, 155-175.
Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieske, A., Amann, R., Jorgensen, B.B., Witte, U. and Pfannkuche, O., 2000, A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature 407: 623-626.
Boopathy, R., 2000, Factors limiting bioremediation technologies, Bioresource Technology 74:63-67.
Borden, R.C. and Rodriguez, B.X., 2006, Evaluation of slow release substrates for anaerobic bioremediation, Bioremediation Journal 10:59-69.
Boulicault, K.J., Hinchee, R.E., Wiedemeier, T.H., Hoxworth, S.W., Swingle, T.P., Carver, E. and Haas, P.E., 2000, Vegoil: A novel approach for stimulating reductive dechlorination, Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, 1-7.
Biegert, T., Fuchs, G. and Heider, J., 1996, Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate, European Journal of Biochemistry 238:661-668.
Blöthe, M. and Roden, E.E., 2009, Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture, Applied and Environmental Microbiology 75:6937-6940.
Bælum, J., Henriksen, T., Hansen, H.C. and Jacobsen, C.S., 2006, Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil Is quantitatively linked to the class III tfdA Gene, Applied and Environmental Microbiology 72:1476-1486.
Bȕrgmann, H., Jenni, S., Vazquez, F. and Udert, K.M., 2011, Regime shift and microbial dynamics in a sequencing batch reactor for nitrification and anammox treatment of urine, Applied and Environmental Microbiology 77:5897-5907.
Beunink, J. and Rehm, H.J., 1988, Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system, Applied Microbiology and Biotechnology 29:72-80.
Bellini, M.I., Gutiérrez, L., Tarlera,S. and Scavino, A. F., 2013, Isolation and functional analysis of denitrifiers in an aquifer with high potential for denitrification, Systematic and Applied Microbiology 36:505-516.
Brugna, M., Nischke, W., Toci, R., Bruschi, M. and Giudici-Orticoni, M., 1999, First evidence for the presence of a hydrogenase in the sulfur-reducing bacterium Desulfuromonas acetoxidans, Journal of Bacteriology 181:5505-5508.
Bowman, K.S., Rainey, F.A. and Moe, W.M., 2008, Production of hydrogen by Clostridium species in the presence of chlorinated solvents, FEMS Microbiology Letters 290:188-194.
Bazylinski, D.A., Palome, N., Blakemore, N.A. and Blakemore, R.P., 1986, Denitrification by Chromobacterium violaceum, Applied and Environmental Microbiology 52:696-699.
Boyle, A.W., Phelps, C.D. and Young, L.Y., 1999, Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol, Applied and Environmental Microbiology 65:1133-1140.
Barker, P.S., Morrison, F.O. and Whitaker, R.S., 1965, Conversion of DDT to DDD by Proteus vulgaris, a bacterium isolated from the intestinal flora of a mouse, Nature 205:621-622.
Baker, G.C., Smith, J.J. and Cowan, D.A., 2003, Review and re-analysis of domain-specific 16S primers, Journal of Microbiological Methods 55:541-555.
Bouquard, C., Ouazzani, J., Promé, J.C., Michel-Briand, Y. and Plésiat, P., 1997, Dechlorination of atrazine by a Rhizobium sp. isolate, Applied and Environmental Microbiology 63:862-866.
Borden, R.C., 2007, Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation, Journal of Contaminant Hydrology 94:1-12.
Bouwer, E.J., 1994, Bioremediation of chlorinated solvents using alternate electron acceptors, Handbook of Bioremediation , 149-175.
Ballapragada, B.S., Stensel, H.D., Puhakka, J.A. and Ferguson, J.F., 1997, Effect of hydrogen on reductive dechlorination of chlorinated ethenes, Environmental Science and Technology 31:1728-1734.
Cao, F., Li, F.B., Liu, T.X., Huang, D.Y., Wu, C.Y., Feng, C.H., Li, X.M., 2010, Effect of Aeromonas hydrophila on reductive dechlorination of DDTs by zero-valent iron, Journal of Agricultural and Food Chemistry 58:12366-12372.
Cao, L., Xu, J., Wu, G., Li, M., Jiang, J., He, J., Li, S. and Hong, Q., 2013, Identification of two combined genes responsible for dechlorination of 3,5,6-trichloro-2-pyridinol (TCP) in Cupriavidus pauculus P2, Journal of Hazardous Materials 260:700-706.
Canion, A., Prakash, O., Green, S.J., Jahnke, L., Kuypers, M.M. and Kostka, J.E., 2013, Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway), Environmental Microbiology 15:1606-1618.
Carter, S. R. and Jewell, W. J., 1993, Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures, Water Research 27:607-615.
Cámara, B., De los Ríos, A., Urizal, M., de Buergo, M.A., Varas, M.J., Fort, R. and Ascaso, C., 2011, Characterizing the microbial colonization of a dolostone quarry: implications for stone biodeterioration and response to biocide treatments, Microbial Ecology 62:299-313.
Castaldini, M., Turrini, A., Sbrana, C., Benedetti, A., Marchionni, M., Mocali, S., Fabiani, A., Landi, S., Santomassimo, F., Pietrangeli, B., Nuti, M.P., Miclaus, N., and Giovannetti, M., 2005, Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms, Applied and Environmental Microbiology 71:6719-6729.

Choi, B.K., Wyss, C. and Göbel, U.B., 1996, Phylogenetic analysis of pathogen-related oral spirochetes, Journal of Clinical Microbiology 34:1922-1925.
Chang, Y.C., Hatsu, M., Jung, K., Yoo, Y.S. and Takamizawa, K., 2000, Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1, Journal of Bioscience and Bioengineering 89:489-491.
Chauhan, S., Barbieri, P. and Wood, T.K., 1998, Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1, Applied and Environmental Microbiology 64:3023-3024.
Chakravorty, S., Helb, D., Burday, M., Connell, N. and Alland, D., 2007, A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria, Journal of Microbiological Methods 69:330-339.
Clement, T.P., Johnson, C.D., Sun, Y., Klecka, G.M. and Bartlett, C., 2000, Natural attenuation of chlorinated ethane compounds: model development and field-scale application at the Dover site, Journal of Contaminant Hydrology 42:113-140.
Clarridge, J.E., 2004, Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases, Clinical Microbiology Reviews 17:840-862.
Coates, J.D., Michaelidou, U., Bruce, R.A., O'Connor, S.M., Crespi, J.N. and Achenbach, L.A., 1999, Ubiquity and diversity of dissimilatory (per)chlorate-reducing, Applied and Environmental Microbiology 65:5234-5241.
Cupples, AM., 2008, Real-time PCR quantification of Dehalococcoides populations: methods and applications, Journal of Microbiological Methods 72:1-11.
Dandie, C.E., Burton, D.L., Zebarth, B.J., Trevors, J.T. and Goyer, C., 2007, Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems, Systematic and Applied Microbiology 30:128-138.
Darabpour, E., Ardakani, M.R., Motamedi, H. and Ronagh, M.T., 2011, Isolation of a broad spectrum antibiotic producer bacterium Pseudoalteromonas piscicida PG-02, from the Persian Gulf, Bangladesh Journal of Pharmacology 6:74-83.
Dar, S.A., Yao, L., van Dongen, U., Kuenen, J.G. and Muyzer, G., 2007, Analysis of Diversity and Activity of Sulfate-Reducing Bacterial Communities in Sulfidogenic Bioreactors Using 16S rRNA and dsrB Genes as Molecular Markers, Applied and Environmental Microbiology 73:594-604.
Danko, A.S., Saski, C.A., Tomkins, J.P. and Freedman, D.L., 2006, Involvement of coenzyme M during aerobic biodegradation of vinyl chloride and ethene by Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD. Applied and Environmental Microbiology 72:3756-3758.
Dedysh, S. N., Dunfield, P. F., Derakshani, M., Stubner, S., Heyer, J., and Liesack, W. 2003, Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes, FEMS Microbiology Ecology 43:299-308.
Dedysh, S.N., Liesack, W., Khmelenina, V.N., Suzina, N.E.,Trotsenko, Y.A., Semrau, J.D., Bares, A.M., Panikov, N.S. and Tiedje, J.M., 2000, Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bags, representing a novel subtype of serine-pathway methanotrophs, International Journal of Systematic and Evolutionary Microbiology 50:955-969.
De Wildeman, S., Neumann, A., Diekert, G. and Verstraete, W., 2003, Growth-substrate dependent dechlorination of 1,2-dichloroethane by a homoacetogenic bacterium, Biodegradation 14:241-247.
del Cerro, C., García, J.M., Rojas, A., Tortajada, M., Ramón, D., Galán, B., Prieto, M.A., and García, J.L., 2012, Genome Sequence of the Methanotrophic Poly-β-Hydroxybutyrate Producer Methylocystis parvus OBBP, Journal of Bacteriology194:5709-5710.
Deutzmann, J.S. and Schink, B., 2011, Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake, Applied and Environmental Microbiology, 77:4429-4436.
DiChristina, T.J., Moore, C.M. and Haller, C.A., 2002, Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene, Journal of Bacteriology 184:142-151.
Dominiak, D.M., Nielsen, J.L., Nielsen, P.H., 2011, Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms, Environmental Microbiology 13:710-721.
Doronina, N.V., Darmaeva, T.D. and Trotsenko, Y.A., 2003, Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East Mongolian saline soda lake, International Journal of Systematic and Evolutionary Microbiology 53:223-229.
Duhamel, M., Mo, K. and Edwards, E.A., 2004, Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene, Applied and Environmental Microbiology 70:5538-5545.
Egli, C., Scholtz, R., Cook, A.M. and Leisinger, T., 1987, Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp., FEMS Microbiology Letters 43:257-261.
Ely, R.L., Williamson, K.J., Guenther, R.B., Hyman, M.R. and Arp, D.J., 1995, A cometabolic kinetics model incorporating enzyme inhibition, inactivation and recovery: I Model development, analysis and testing, Biotechnology and Bioengineering 46:218-231
Elango, V.K., Liggenstoffer, A.S. and Fathepure, B.Z., 2006, Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1, Applied Microbiology and Biotechnology 72:1270-1275.
Ensign, S.A., Hyman, M.R. and Arp, D.J., 1992, Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene grown Xanthobacter strain, Applied and Environmental Microbiology 58:3038-3046.
Ercolini, D., 2004, PCR-DGGE fingerprinting: novel strategies for detection of microbes in food, Journal of Microbiological Methods 56:297-314.
Ettwig, K.F., Shima, S., van de Pas-Schoonen, K.T., Kahnt, J., Medema, M.H., Op den Camp, H.J., Jetten, M.S. and Strous, M., 2008, Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea, Environmental Microbiology 10:3164-3173.
Fahrbach, M., Kuever, J., Remesch, M., Huber, B.E., Kämpfer, P., Dott, W. and Hollender, J., 2008, Steroidobacter denitrificans gen. nov., sp nov., a steroidal hormone-degrading gammaproteobacterium, International Journal of Systematic and Evolutionary Microbiology 58:2215-2223.
Fang, H., Dong, B., Yan, H., Tang, F., and Yu, Y., 2010, Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil, Journal of Hazardous Materials 184:281-289.
Fennell, D.E. and Gossett, J.M.,1997, Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene, Environmental Science and Technology 31:918-926.
Felske, A., Engelen, B., Nübel, U. and Backhaus, H., 1996, Direct ribosome isolation from soil to extract bacterial rRNA for community analysis, Applied and Environmental Microbiology 62:4162-4167.
Felske, A., Wolterink, A., Van Lis, R. and Akkermans, A.D.L., 1998, Phylogeny of the main bacterial 16S rRNA sequences in Drentse A Grassland soils (The Netherlands), Applied and Environmental Microbiology 64:871-879.
Fischer, S. G. and Lerman, L.S., 1979, Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis, Cell 16:191-200.
Fogel, S., Lewis, R., Groher, D. and Findlay, M., 1995, PCE Treatment in saturated soil columns: methanogens in sequence with methanotrophs, Third International In Situ and On-Site Bioreclamation Symposium, Hichee, R.E, Leeson, A. and Semprini., L.(Eds.), Bioremediation of Chlorinated Solvents 3:153-160, Battelle Press, Columbus, Ohio.
Folsom, B.R., Chapman, P.J. and Pritchard, P.H., 1990, Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates, Applied and Environmental Microbiology 56:1279-1285.
Freeborn, R.A., West, K.A., Bhupathiraju, V.K., Chauhan, S., Rahm, B.G., Richardson, R.E. and Alvarez-Cohen, L., 2005, Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors, Environmental Science and Technology 39:8358-8368.
Freedman, D.L. and Cossett, J.M., 1989, Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions, Applied and Environmental Microbiology 55:2144-2151.
Fries, M.R., Forney, L.J. and Tiedje, J.M., 1997, Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred, Applied and Environmental Microbiology 63:1523-1530.
Friedrich, M.M. and Lipski, A., 2008, Alkanibacter difficilis gen. nov., sp. nov. and Singularimonas variicoloris gen. nov., sp. nov., hexane-degrading bacteria isolated from a hexane-treated biofilter, International Journal of Systematic and Evolutionary Microbiology 58:2324-2329.
Futamata, H., Harayama, S., Hiraishi, A. and Watanabe, K., 2003, Functional and structural analyses of trichloroethene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments, Applied Microbiology and Biotechnology 60:594-600.
Futamata, H., Nagano, Y., Watanabe, K. and Hiraishi, A., 2005, Unique kinetic properties of phenol-degrading Variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture, Applied and Environmental Microbiology 71:904-911.
Fuller, M.E., Hatzinger, P.B., Rungamakol, D., Schuster, R.L. and Steffan, R.J., 2004, Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation, Environmental Toxicology and Chemistry 23:313-324.
Gantzer, C.J. and Wackett, L.P.,1991, Reductive dechlorination catalyzed by bacterial transition-metal coenzymes, Environmental Science and Technology 25:715-722.
Gavaskar, A., Gupta, N., Sass, B., Janosy, R. and Hicks, J., 2000, Design guidance for application of permeable reactive barriers for groundwater remediation, Strategic Environmental Research and Development Program, Battelle, Columbus, Ohio.
Gelsomino, A., Keijzer-Wolters, A.C., Cacco, G. and Van Elsas, J.D., 1999, Assessment of bacterial community diversity in soil by polymerase chain reaction and denaturing gradient gel electrophoresis, Journal of Microbiological Methods 38:1-15.
Gibson, S.A. and Sewell, G.W., 1992, Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids and alcohols, Applied and Environmental Microbiology 58:1392-l393.
Girguis, P.R., Orphan, V.J., Hallam, S.J. and DeLong, E.F., 2003, Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor, Applied and Environmental Microbiology 69:5472-5482.
Gogleva, A.A., Kaparullina, E.N., Doronina, N.V. and Trotsenko, Y.A., 2011, Methylobacillus arboreus sp. nov., and Methylobacillus gramineus sp. nov., novel non-pigmented obligately methylotrophic bacteria associated with plants, Systematic and Applied Microbiology 34:477-481.
Gordon, M., Choe, N., Duffy, J., Ekuan, G., Heilman, P., Muiznieks, I., Ruszaj, M., Shurtleff, B.B., Strand, S., Wilmoth, J. and Newman, L.A., 1998, Phytoremediation of Trichloroethylene with Hybrid Poplars, Environmental Health Perspective 106:1001-1004.
Gomila, M., Bowien, B., Falsen, E., Moore, E.R. and Lalucat, J., 2007, Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water, International Journal of Systematic and Evolutionary Microbiology 57:2629-2635.
Gorlatov, S.N. and Golovleva, L.A., 1992, Effect of cosubstrates on the dechlorination of selected chlorophenolic compounds by Rhodococcus erythropolis 1CP, Journal of Basic Microbiology 32:177-184.
Grostern, A. and Edwards, E. A., 2009, Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene, Applied and Environmental Microbiology 75:2684-2693.
Hanson, R.S. and Hanson, T.E., 1996, Methanotrophic Bacteria, Microbiological reviews 60:439-471.
Hartmans, S. and Debont, J.A.M., 1992, Aerobic vinyl-chloride metabolism in Mycobacterium aurum L1, Applied and Environmental Microbiology 58:1220-1226.
Harkness, M.R., 2000, Economic considerations in enhanced anaerobic biodegradation, Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, 2nd International Conference Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA.
Harker, A.R. and Kim, Y., 1990, Trichloroethylene degradation by two independent aromatic degrading pathways in Alcaligenes eutrophus JMP134, Applied and Environmental Microbiology 56:1179-1181.
Hage, J.C. and Hartmans, S., 1999, Monooxygenase-mediated 1,2-dichlroethane degradation by Pseudomonas sp. strain DCA1, Applied and Environmental Microbiology 65:2466-2470.
Harbi, B., Jabeur, C., Ellafi, A. and Bakhrouf, A., 2013, Phenotypic variation and morphological changes in starved denitrifying Aeromonas hydrophila, Annals of Microbiology 63:1039-1045.
Hatt, J.K. and Löffler, F.E., 2012, Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater, Journal of Microbiological Methods 88:263-270.
Hatta, T., Fujii, E. and Takizawa, N., 2012, Analysis of two gene clusters involved in 2,4,6-trichlorophenol degradation by Ralstonia pickettii DTP0602, Bioscience, Biotechnology, and Biochemistry 76:892-899.
Hata, J., Miyata, N., Kim, E.S., Takamizawa, K. and Iwahori, K., 2004, Anaerobic degradation of cis-1,2-dichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment, Journal of Bioscience and Bioengineering 97:196-201.
Häggblom, M.M., Apajalahti, J.H. and Salkinoja-Salonen M.S., 1988, Hydroxylation and dechlorination of chlorinated guaiacols and syringols by Rhodococcus chlorophenolicus, Applied and Environmental Microbiology 54:683-687.
Haveman, S.A., DiDonato, R.J. Jr., Villanueva, L., Shelobolina, E.S., Postier, B.L., Xu, B., Liu, A. and Lovley, D.R., 2008, Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production, Applied and Environmental Microbiology 74:4277-4284.
Harkness, M. R., Bracco, A. A., Brennan, M. J. Jr., DeWeerd K. A. and Spivack, J. L., 1999, Use of bioaugmentation to Stimulate complete reductive dechlorination of trichloroethene in Dover soil columns, Environmental Science and Technoogy 33:1100-1109.
Hamamura, N., Page, C., Long, T., Semprini, L. and Arp, D.J., 1997, Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b, Applied and Environmental Microbiology 63:3607-3613.
Heald, S. and Jenkins, R.O., 1994, Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida, Applied and Environmental Microbiology 60:4634-4637
Hendrickson, E. R., Payne, J.A., Young, R.M., Starr, M.G., Perry, M.P., Fahnestock, S., Ellis, D.E. and Ebersole, R.C., 2002, Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe, Applied and Environmental Microbiology 68:485-495.
Heuer, H., Krsek, M., Baker, P., Smalla, K. and Wellington, E.M., 1997, Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients, Applied and Environmental Microbiology 63:3233-3241.
Heulin, T., Barakat, M., Christen, R., Lesourd, M., Sutra, L., De Luca, G. and Achouak, W., 2003, Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia, International Journal of Systematic and Evolutionary Microbiology 53:589-594.
He, R., Wooller, M. J., Pohlman, J.W., Quensen, J., Tiedje, J.M. and Leigh, M.B., 2012, Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes, Applied and Environmental Microbiology 78:4715-4723.
He, J., Ritalahti, K.M., Yang, K.L., Koenigsberg, S.S. and Löffler, F.E., 2003a, Detoxification of vinyl chloride to ethane coupled to growth of an anaerobic bacterium, Nature 424:62-65.
He, J., Ritalahti, K.M., Aiello, M.R. and Löffler, F.E., 2003b, Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species, Applied and Environmental Microbiology 69:996-1003.
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K.M. and Löffler, F.E., 2005, Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe, Environmental Microbiology 7:1442-1450.
He, F., Huang, D., Liu, L., Shu, X., Yin, H. and Li, X., 2008, A novel PCR-DGGE-based method for identifying plankton 16S rDNA for the diagnosis of drowning, Forensic Science International 176:152-156.
Holliger, C., 1995, The anaerobic microbiology and biotreatment of chlorinated ethenes, Current Opinion in Biotechnology 6:347-351.
Holmes, D.E. , Bond, D.R. and Lovley, D.R., 2004, Electron Transfer by Desulfobulbus propionicus to Fe(III) and Graphite Electrodes, Applied and Environmental Microbiology 70:1234-1237.
Holmes, V.F., He, J., Lee, P.K.H. and Alvarez-Cohen, L., 2006, Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes, Applied and Environmental Microbiology 72:5877-5883.
Hou, L.H. and Dutta, S.K., 2000, Phylogenetic characterization of several para- and meta-PCB dechlorinating Clostridium species: 16s rDNA sequence analyses, Letters in Applied Microbiology 30:238-243.
Hong, X., Zhang, X., Liu, B., Mao, Y., Liu, Y. and Zhao, L., 2010, Structural differentiation of bacterial communities in indole-degrading bioreactors under denitrifying and sulfate-reducing conditions, Research in Microbiology 161:687-693.
Horn, M.A., Ihssen, J., Matthies, C., Schramm, A., Acker, G. and Drake, H.L., 2005, Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa, International Journal of Systematic and Evolutionary Microbiology 55:1255-1265.
Horn, M.A., Drake, H. L. and Schramm, A., 2006, Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar, Applied and Environmental Microbiology 72:1019-1026.
Hölscher, T., Krajmalnik-Brown, R., Ritalahti, K.M., Wintzingerode, F.V., Görisch, H., Löffler, F.E. and Adrian, L., 2004, Multiple non-identical putative reductive dehalogenase genes are common in Dehalococcoides, Applied and Environmental Microbiology 70:5290-5297.
Hunter, W.J., 2001, Use of vegetable oil in a pilot-scale denitrifying barrier, Journal of Contaminant Hydrology 53:119-131.
Hunter, W.J., 2002, Bioremediation of chlorate or perchlorate contaminated water using permeable barriers containing vegetable oil, Current Microbiology 45:287-292.
Hyman MR, Russell, S.A., Ely, R.L., Williamson, K.J. and Arp, D.J., 1995, Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea, Applied and Environmental Microbiology 61:1480-1487.
Interstate Technology and Regulatory Council (ITRC), 2000, Dense Non-Aqueous Phase Liquids (DNAPLs): Review of Emerging Characterization and Remediation Technologies, DNAPLs-1.
Im, W.T., Bae, H.S., Yokota, A. and Lee, S.T., 2004, Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium, International Journal of Systematic and Evolutionary Microbiology 13:851-855.
Im, W.T., Kim, S.H., Kim, M.K., Ten, L.N. and Lee, S.T., 2006, Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales, International Journal of Systematic and Evolutionary Microbiology 56:1663-1666.
Iversen, N., Oremland, R.S. and Klug, M.J., 1987, Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation, Limnology and Oceanography 32:804-814.
Jablonski, P.E. and Ferry, J.G.,1992, Reductive dechlorination of trichloroethylene by CO-reduced CO dehydrogenase enzyme complex from Methanosarcina thermophila, FEMS Microbiology Letters 75:55-59.
Janda, J.M. and Abbott, S.L., 2007, 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls, Journal of Clinical Microbiology 45:2761-2764.
Johnson, D.R., Lee, P.K.H., Holmes, V.F. and Alvarez-Cohen, L., 2005, An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene, Applied and Environmental Microbiology 71:3866-3871.
Joergensen, L., 1985, Methane oxidation by Methylosinus trichosporium measured by membrane-inlet mass spectrometry, Microbial gas metabolism: mechanistic, metabolic and biotechnological aspects, Poole, R.K. and Dow, C.S.(Eds), 287-294, Academic Press, London.
Kageyama, C., Ohta, T., Hiraoka, K., Suzuki, M., Okamoto, T. and Ohishi, K., 2005, Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov., Archives of Microbiology 183:56-65.
Kataoka, M., Ueda, K., Kudo, T., Seki, T. and Yoshida, T., 1997, Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces, FEMS Microbiology Letters 151:249-255.
Katayama, A., Fujimura, Y. and Kuwatsuka, S., 1993, Microbioal degradation of DDT at extremely low concentrations, Journal of Pesticide Science 18:353-359.
Kalyuzhnaya, M.G., de Marco, P., Bowerman, S., Pacheco, C.C., Lara, J.C., Lidstrom, M.E. and Chistoserdova, L., 2006, Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the betaproteobacteria represented by three methylotrophic isolates, International Journal of Systematic and Evolutionary Microbiology 56:2517-2522.
Kamaludeen, S.P., Arunkumar, K.R., Avudainayagam, S. and Ramasamy, K., 2003, Bioremediation of chromium contaminated environments, Indian Journal of Experimental Biology 41:972-985.
Kelly, D.P. and Wood, A.P. 2010, Isolation and characterization of methanotrophs and methylotrophs: diversity of methylotrophic organisms and of one-carbon substrates, Handbook of Hydrocarbon and Lipid Microbiology, 3827-3845.
Khan, S. T. and Hiraishi, A., 2002, Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge, Journal of General and Applied Microbiology 48:299-308.
Kim, M.K., Kim, Y.J., Cho, D.H., Yi, T.H., Soung, N.K. and Yang, D.C., 2007, Solimonas soli gen. nov., sp. nov., isolated from soil of a ginseng field, International Journal of Systematic and Evolutionary Microbiology 57:2591-2594.
Kissell, F. N., 2006, Preventing methane gas explosions during tunnel construction, Handbook for Methane Control in Mining, 169-184.
Kjellerup, B.V., Paul, P., Ghosh, U., May, H. and Sowers, K., 2012, Spatial distribution of PCB dechlorinating bacteria and activities in contaminated soil, Applied and Environmental Soil Science, doi:10.1155/2012/584970.
Kloos, K., Mergel, A., Rösch, C. and Bothe, H., 2001, Denitrification within the genus Azospirillum and other associative bacteria, Australian Journal of Plant Physiology 28:991-998.
Kleiveland, C.R., Hult, L.T., Kuczkowska, K., Jacobsen, M., Lea, T. and Pope, P.B., 2012, Draft Genome Sequence of the Methane-Oxidizing Bacterium Methylococcus capsulatus (Texas), Journal of Bacteriology 194:6626.
Konovalova, E.I., Solyanikova, I.P. and Golovleva, L.A., 2009, Degradation of 4-chlorophenol by the strain Rhodococcus opacus 6a, Microbiology 78:805-807.
Koh, S.C., Bowman, J.P. and Sayler, G.S., 1993, Soluble methane Monooxygenase production and trichloroethylene degradation by a Type I methanotroph, Methylomonas methanica 68-1, Applied and Environmental Microbiology 59:960-967.
Kong, J.Y., Su, Y., Zhang, Q.Q., Bai, Y., Xia, F.F., Fang, C.R. and He, R., 2013, Vertical profiles of community and activity of methanotrophs in landfill cover soils of different age, Journal of Applied Microbiology 115:756-765.
Krumholz, L.R., 1997, Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. International Journal of Systematic Bacteriology 47:1262-1263.
Krajmalnik-Brown, R., Hölscher, T., Thomson, I.N., Saunders, F.M., Ritalahti, K.M. and Löffler, F.E., 2004, Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1, Applied and Environmental Microbiology 70:6347-6351.
Landa, A.S., Sipkema, E.M., Weijma, J., Beenackers, A.A., Dolfing, J. and Janssen, D.B., 1994, Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate, Applied and Environmental Microbiology 60:3368-3374.
Landy, E.T., Mitchell, J.I., Hotchkiss, S. and Eaton, R.A., 2008, Bacterial diversity associated with archaeological waterlogged wood: ribosomal RNA clone libraries and denaturing gradient gel electrophoresis (DGGE), International Biodeterioration and Biodegradation 61:106-116.
Labbé, N., Parent, S. and Villemur, R., 2004, Nitratireductor aquibiodomus gen. nov., sp. nov., a novel α-proteobacterium from the marine denitrification system of the Montreal Biodome (Canada), International Journal of Systematic and Evolutionary Microbiology 54:269-273.
Lerman, L.S., Fischer, S.G., Hurley, I., Silverstein, K. and Lumelsky, N., 1984, Sequence-determined DNA separations, Annual Review of Biophysics 13:399-423.
Lerner, A., Shor, Y., Vinokurov, A., Okon, A. and Jurkevitch, E., 2006, Can denaturing gradient gel electrophoresis (DGGE) analysis of amplified 16s rDNA of soil bacterial populations be used in forensic investigations? Soil Biology and Biochemistry 38:1188-1192.

Lerner, A., Herschkovitz, Y., Baudoin, E., Nazaret, S., Moenne-Loccoz, Y., Okon, Y. and Jurkevitch, E., 2006, Effect of Azospirillum brasilense inoculation on rhizobacterial communities analyzed by denaturing gradient gel electrophoresis and automated ribosomal intergenic spacer analysis, Soil Biology and Biochemistry 38:1212-1218.
Lee, P.K., Macbeth, T.W., Sorenson, K.S. Jr., Deeb, R.A. and Alvarez-Cohen, L., 2008, Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site, Applied and Environmental Microbiology74:2728-2739.
Leahy, J.G., Byrne, A.M. and Olsen, R.H., 1996, Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria, Applied and Environmental Microbiology 62:825-833
Little, C.D., Palumbo, A.V., Herbes, S.E., Lidstrom, M.E., Tyndall, R.L. and Gilmer, P.J.,1988, Trichloroethylene biodegradation by a methane-oxidizing bacterium, Applied and Environmental Microbiology 54:951-956.
Lindow, N.L. and Borden, R.C., 2005, Anaerobic Bioremediation of Acid Mine Drainage using Emulsified Soybean Oil, Mine Water and the Environment 24:199-208.
Liu, S.J., Jiang B., Huang, G.Q. and Li, X.G., 2006, Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier, Water Research 40:3401-3408.
Liu, J., Amemiya, T., Chang, Q., Qian, Y. and Itoh, K., 2012, Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures, Biodegradation 23:683-691.
Lohner, S.T. and Spormann, A.M., 2013, Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis, Philosophical transactions of the Royal Society of London, Series B, Biological sciences 368.
Louie, T.M., Webster, C.M. and Xun, L., 2002, Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134, Journal of Bacteriology 184:3492-3500.
Löffler, F. E., Yan, J., Ritalahti, K. M., Adrian, L., Edwards, E. A., Konstantinidis, K. T., Müller, J.A., Fullerton, H., Zinder, S.H. and Spormann, A. M., 2012, Dehalococcoides mccartyi gen. nov., sp. nov., obligate organohalide-respiring anaerobic bacteria, relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidetes classis nov., within the phylum Chloroflexi, International Journal of Systematic and Evolutionary Microbiology Papers in Press, Published online ahead of print on April 27, 2012 as doi:10.1099/ijs.0.034926-0.
Lontoh, S., DiSpirito, A.A. and Semrau, J.D., 1999, Dichloromethane and trichloroethylene inhibition of methane oxidation by the membrane-associated methane monooxygenase of Methylosinus trichosporium OB3b, Archives of Microbiology 171:301-308.
Long, C.M. and Borden, R.C., 2006, Enhanced reductive dechlorination in columns treated with edible oil emulsion, Journal of Contaminant Hydrology 87:54-72.
Luciñski, R., Polcyn, W. and Ratajczak, L., 2002, Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes, Acta Biochimica Polonica 49:537-546.
Lombard, M., Fontecave, M., Touati, D. and Nivière, V., 2000, Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity, The Journal of Biological Chemistry 275:115-121.
Long, C.M. and Borden, R.C., 2006, Enhanced reductive dechlorination in columns treated with edible oil emulsion, Journal of Contaminant Hydrology 87:54-72.
Lu, J.J., Perng, C.L., Lee, S.Y. and Wan, C.C., 2000, Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid, Journal of Clinical Microbiology 38:2076-2080.
Lu, X., Wilson, J.T., Shen, H., Henry, B.M. and Kampbell, D.H., 2008, Remediation of TCE-contaminated groundwater by a permeable reactive barrier filled with plant mulch (Biowall), Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering 43:24-35.
Luijten, M.L.G.C., de Weert, J., Smidt H, Boschker, H.T.S., de Vos, W.M., Schraa, G. and Stams, A.J.M., 2003, Description of Sulfurospirillum halorespirans sp. nov, an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov., International Journal of Systematic and Evolutionary Microbiology 53:787-793.
Mancini, S., Abicht, H.K., Karnachuk, O.V. and Solioz, M., 2011, Genome sequence of Desulfvibrio sp. A2, a highly copper resistant, sulfate-reducing bacterium isolated from effluents of a zinc smelter at the Urals, Journal of Bacteriology 193:6793-6794.
Matussek, A., Stark, L., Dienus, O., Aronsson, J., Mernelius, S., Löfgren, S. and Lindgren, P.E., 2011, Analyzing multiclonality of Staphylococcus aureus in clinical diagnostics using spa-based denaturing gradient gel electrophoresis, Journal of Clinical Microbiology 49:3647-3648.
Magnuson, J.K., Romine, M.F., Burris, D.R. and Kingsley, M.T., 2000, Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization, Applied and Environmental Microbiology 66:5141-5147.
Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., Dymock, D. and Wade, W.G., 1998, Design andevaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA, Applied and Environmental Microbiology 64:795-799.
Malachowsky, K.J., Phelps, T.J., Teboli, A.B., Minnikin D.E. and White, D.C., 1994, Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species, Applied and Environmental Microbiology 60:542-548.
Manickam, N., Mau, M. and Schloemann, M., 2006, Characterization of the novel HCH-degrading strain Microbacterium sp. ITRC1, Applied Microbiology and Biotechnology 69:580-588.
Manickam, N., Misra, R. and Mayilraj, S., 2007, A novel pathway for the biodegradation of γ-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12, Journal of Applied Microbiology 102:1468-1478.
Maymó-Gatell, X., Chien, Y.T., Gossett, J.M. and Zinder, S.H., 1997, Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene, Science 276:1568-1571.
Maynard, C., Berthiaume, F., Lemarchand, K., Harel, J., Payment, P., Bayardelle, P., Masson, L. and Brousseau, R., 2005, Waterborne pathogen detection by use of oligonucleotide-based microarrays, Applied and Environmental Microbiology 71:8548-8557.
McCarty, P.L. and Semprini, L., 1994, Groundwater treatment for chlorinated solvent, Handbook of Bioremediation, 87-116.
McCabe, K.M., Zhang, Y.H., Huang, B.L., Wagar, E.A. and McCabe, E.R., 1999, Bacterial species identification after DNA amplification with a universal primer pair, Molecular Genetics and Metabolism 66:205-211.
McDonald, I.R., Bodrossy, L., Chen, Y. and Murrell, J.C., 2008, Molecular ecology techniques for the study of aerobic methanotrophs, Applied and Environmental Microbiology 74:1305-1315.
Monferrán, M.V., Echenique, J.R. and Wunderlin, D.A., 2005, Degradation of chlorobenzenes by a strain of Acidovorax avenae isoloated from a pollutied aquifer, Chemosphere 61:98-106.
Mohn, W.W. and Tiedje, J.M., 1992, Microbial reductive dehalogenation, Microbiological Reviews 56:482-507.
Mukherjee, P. and Roy, P., 2013, Cloning, sequencing and expression of novel trichloroethylene degradation genes from Stenotrophomonas maltophilia PM102: a case of gene duplication, Journal of Bioremediation and Biodegradation 4:177.
Müller, J.A., Rosner, B.M., Von Abendroth, G., Meshulam-Simon, G., McCarty, P.L. and Spormann, A.M., 2004, Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution, Applied and Environmental Microbiology 70:4880-4888.
Müller, R.H., Kleinsteuber, S. and Babel, W., 2001, Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides, Microbiological Research 156:121-131.
Munson, M.A., Banerjee, A., Watson, T.F. and Wade, W.G., 2004, Molecular analysis of the microflora associated with dental caries. Journal of Clinical Microbiology 42:3023-3029.
Muyzer, G., de Waal, E.C., Uitterlinden, A.G., 1993, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Applied and Environmental Microbiology 59:695-700.
Muyzer, G. and de Waal, E.C., 1994, Determination of the genetic diversity of microbial communities using DGGE analysis of PCR-amplified 16S rDNA, Microbial mats: structure, development and environmental significance 35:207–214.
Muyzer, G., Teske, A., Wirsen, C.O. and Jannasch, H.W., 1995, Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments, Archives of Microbiology 164:165-172.
Muyzer, G. and Smalla, K., 1998, Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Antonie van Leeuwenhoek 73:127-141.
Muyzer, G. and Stams, A. J., 2008, The ecology and biotechnology of sulphate-reducing bacteria, Nature Reviews Microbiology 6:441-154.
Nelson, J.L., Fung, J.M., Cadillo-Quiroz, H., Cheng, X. and Zinder, S.H., 2011, A Role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene, Environmental Science and Technology 45:6806-6813.
Newell, C.J., Bowers, R.L. and Rifai, H.S., 1994, Impact of non-aqueous phase liquids (NAPLs) on groundwater remediation, Summer National AIChE Meeting, Symposium 23, Multimedia Pollutant Transport Models, Denver, CO, Aug. 16( www.GSI-net.com).
Newell, C. J., Hass, P. E., Hughes, J. B. and Khan, T., 2000, Results from two direct hydrogen delivery field tests for enhanced dechlorination, Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, 21-28.
Noar, J.D. and Buckley, D.H., 2009, Ideonella azotifigens sp. nov., an aerobic diazotroph of the Betaproteobacteria isolated from grass rhizosphere soil, and emended description of the genus Ideonella, International Journal of Systematic and Evolutionary Microbiology 59:1941-1946.
Ntaikou, I., Gavala, H.N., Kornaros, M. and Lyberatos, G., 2008, Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus, International Journal of Hydrogen Energy 33:1153-1163.
Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W. and Backhaus, H., 1996, Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis, Journal of Bacteriology 178: 5636-5643.
Ohtsubo, Y., Suzuki, S., Onuma, K., Goto, H., Nagata, Y. and Tsuda, M., 2010, PCB / biphenyl degradation operon repressed by different compounds in Acidovorax sp. KKS102 and Burkholderia multivorans ATCC 17616, Journal of Biotechnology 150:240-241.
Ohmura, N., Sasaki, K., Matsumoto, N. and Saiki, H., 2002, Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans, Journal of Bacteriology 184:2081-2087.
Olsen, G.J., Lane, D.J., Giovannoni, S.J., Pace, N.R. and Stahl, D.A., 1986, Microbial ecology and evolution: a ribosomal RNA approach, Annual Review of Microbiology 40:337-365.
Olsen, R.H., Kukor, J.J. and Kaphammer, B., 1994, A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1, Journal of Bacteriology 176:3749-3756.
Oldenhuis, R., Vink, R.L.J.M., Janssen, D.B. and Witholt, B., 1989, Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase, Applied and Environmental Microbiology 55:2819-2826.
Oldenhuis, R., Oedzes, J.Y., van der Waarde, J.J. and Janssen, D.B., 1991, Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene, Applied and Environmental Microbiology 57:7-14.
Orser, C.S., Dutton, J., Lange, C., Jablonski, P., Xun, L., Hargis, M., 1993, Characterization of a Flavobacterium glutathione S-transferase gene involved in reductive dechlorination, Journal of Bacteriology 175:2640-2644.
Oremland, R.S., 2010, NO connection with methane, Nature 464:500-501.
Oude Elferink, S.J., Maas, R.N., Harmsen, H.J. and Stams, A.J., 1995, Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge, Archives of Microbiology 164:119-124.
Pace, N. R., Stahl, D. A., Lane, D.J. and Olsen, G.J., 1986, The analysis of natural microbial populations by ribosomal RNA sequences, Advances in Microbial Ecology 9:1-55.
Pavlostathis, S.C. and Zhuang, P., 1993, Reductive dechlorination of chloroalkenes in microcosms developed with field contaminated soil, Chemosphere 27:585-595.
Pandey, J., Chauhan, A. and Jain, R.K., 2009, Integrative approaches for assessing the ecological sustainability of in situ bioremediation, FEMS Microbiology Reviews 33:324-375.
Petti, C.A., Polage, C.R. and Schreckenberger, P., 2005, The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods, Journal of Clinical Microbiology 43:6123-6125.
Picardal, F., 2012, Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NOx−, Frontiers in Microbiology 3.
Pietikäinen, J., Pettersson, M. and Bååth, E., 2005, Comparison of temperature effects on soil respiration and bacterial and fungal growth rates, FEMS Microbiology Ecology 52:49-58.
Pöritz, M., Goris, T., Wubet, T., Tarkka, M.T., Buscot, F., Nijenhuis, I., Lechner, U., and Adrian, L., 2013, Genome sequences of two dehalogenation specialists—Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region, FEMS Microbiology Letters 343:101-104.
Prieme, A., Braker, G., and Tiedje, J. M., 2002, Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils, Applied and Environmental Microbiology 68:1893-1900.
Quan, Z.X., Im, W.T. and Lee, S.T., 2006, Azonexus caeni sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant, International Journal of Systematic and Evolutionary Microbiology 56:1043-1046.
Rasche, M.E., Hyman, M.R. and Arp, D.J., 1991, Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: Cometabolic Inactivation of Ammonia Monooxygenase and Substrate Specificity, Applied and Environmental Microbiology 57:2986-2994.
Reij, M.W., Kieboom, J., de Bont, J.A. and Hartmans, S., 1995, Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene, Applied and Environmental Microbiology 61:2936-2942.
Ritalahti, K.M., Amos, B.K., Sung, Y.,Wu, Q.Z., Koenigsberg, S.S. and Löffler, F.E., 2006, Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains, Applied and Environmental Microbiology 72:2765-2774.
Rodrigues, J.L.M., Maltseva, O.V., Tsoi, T.V., Helton, R.R., Quensen, J.F. 3rd; Fukuda, M., Tiedje, J.M., 2001, Development of a Rhodococcus recombinant strain for degradation of products from anaerobic dechlorination of PCBs, Environmental Science and Technology 35:663-668.
Rothman, R.E., Majmudar, M.D., Kelen, G.D., Madico, G., Gaydos, C.A., Walker, T. and Quinn, T.C., 2002, Detection of bacteremia in emergency department patients at risk for infective endocarditis using universal 16S rRNA primers in a decontaminated polymerase chain reaction assay, The Journal of Infectious Diseases 186:1677-1681.
Ryoo, D., Shim, H., Canada, K., Barbieri, P. and Wood, T.K., 2000, Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1, Nature Biotechnology 18:775-778.
Saeki, H., Akira, M., Furuhashi, K., Averhoff, B. and Gottschalk, G., 1999, Degradation of trichloroethylene by a linear plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276, Microbiology 145:1721-1730.
Schmalenberger, A., Schwieger, F. and Tebbe, C.C., 2001, Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling, Applied and Environmental Microbiology 67:3557-3563.
Schott, J., Griffin, B.M. and Schink, B., 2010, Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17, Microbiology 156:2428-2437.
Schenzle, A., Lenke, H., Spain, J.C. and Knackmuss, H. J., 1999, Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134, Applied and Environmental Microbiology 65:2317-2323.
Schenk, T., Muller, R. and Lingens, F., 1990, Mechanism of enzymatic dehalogenation of pentachlorophenol by Arthrobacter sp. strain ATCC 33790, Journal of Bacteriology 172:7272-7274.
Sewell, G.W. and Gibson, S.A., 1991, Stimulation of the reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by the addition of toluene, Environmental Science and Technology 25:982-984.
Shields, M.S., Montgomery, S.O., Cuskey, S.M., Chapman, P.J.and Pritchard, P.H., 1991, Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene, Applied and Environmental Microbiology 57:1935-1941.
Shim, H. and Wood, T.K., 2000, Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and toluene o-monooxygenase in resting cells, Biotechnology and Bioengineering 70:693-698.
Shan, H., Kurtz, H.D. Jr., Mykytczuk, N., Trevors, J. T., Freedman, D.L., 2010, Anaerobic biotransformation of high concentrations of chloroform by an enrichment culture and two bacterial isolates, Applied and Environmental Microbiology 76:6463-6469.
Shete, A., Mukhopadhyaya, P.N., Acharya, A., Aich, B.A., Joshi, S. and Ghole, V.S., 2008, Aerobic reduction of perchlorate by bacteria isolated in Kerala, South India, Journal of Applied Genetics 49:425-431.
Sharma, S. K., Sadasivam, K. V. and Dave, J. M., 1987, DDT degradation by bacteria from activated sludge, Environment International 13:183-190.
Sharma, P.K. and McCarty, P.L., 1996, Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethylene to cis-1,2-dichloroethylene, Applied and Environmental Microbiology 62:761-765.
Sharma, A., Thakur, I. and Dureja, P., 2009, Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site, Biodegradation 20:643-650.
Singh, S., Singh, B.B., Chandra, R., Patel, D.K. and Rai, V., 2009, Synergistic biodegradation of pentachlorophenol by Bacillus cereus (DQ002384), Serratia marcescens (AY927692) and Serratia marcescens (DQ002385), World Journal of Microbiology and Biotechnology 25:1821-1828.
Smets, B.F. and Pritchard, P.H., 2003, Elucidating the microbial component of natural attenuation, Current Opinion in Biotechnology 14:283-288.
Smidt, H and de Vos, W.M., 2004, Anaerobic microbial dehalogenation, Annual Review of Microbiology 58:43-73.
Sorokina, A.Y., Chernousova, E.Y. and Dubinina, G.A., 2012, Ferrovibrio denitrificans gen. nov., sp. nov., a novel neutrophilic facultative anaerobic Fe(II)-oxidizing bacterium, FEMS Microbiology Letters 335:19-25.
Sorokin, D.Y., Trotsenko, Y.A., Doronina, N.V., Tourova, T.P., Galinski, E.A., Kolganova, T.V. and Muyzer, G., 2007, Methylohalomonas lacus gen. nov., sp. nov. and Methylonatrum kenyense gen. nov., sp. nov., methylotrophic gammaproteobacteria from hypersaline lakes, International Journal of Systematic and Evolutionary Microbiology 57:2762-2769.
Song, B., Palleroni, N.J., Kerkhof, L.J. and Häggblom, M.M., 2001, Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov., International Journal of Systematic and Evolutionary Microbiology 51:589-602.
Stromeyer, S. A., Stumpf, K., Cook, A. M. and Leisinger, T., 1992, Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: separation of dechlorinative activities in cell extracts and roles for vitamin B12 and other factors, Biodegradation 3:113-123.
Sui, H., Li, X., Huang, G. and Jiang, B., 2006, A study on cometabolic bioventing for the in situ remediation of trichloroethylene, Environmental Geochemistry and Health 28:147-152.
Sun, A.K. and Wood, T.K., 1996, Trichloroethylene degradation and mineralization by Pseudomonads and Methylosinus trichosporium OB3b, Applied Microbiology and Biotechnology 45:248-256.
Sun, B., Cole, J.R. and Tiedje, J.M., 2001, Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments.International Journal of Systematic and Evolutionary Microbiology 51:365-371.
Sun, H., Spring, S., Lapidus, A., Davenport, K., Del Rio, T.G., Tice, H., Nolan, M., Copeland, A., Cheng, J.F., Lucas, S., Tapia, R., Goodwin, L., Pitluck, S., Ivanova, N., Pagani, I., Mavromatis, K., Ovchinnikova, G., Pati, A., Chen, A., Palaniappan, K., Hauser, L., Chang, Y.J., Jeffries, C.D., Detter, J.C., Han, C., Rohde, M., Brambilla, E., Göker, M., Woyke, T., Bristow, J., Eisen, J.A., Markowitz, V., Hugenholtz, P., Kyrpides, N.C., Klenk, H.P. and Land, M., 2010, Complete genome sequence of Desulfarculus baarsii type strain (2st14T), Standards in Genomic Sciences 3:276-284.
Sugio, T., Domatsu, C., Munakata, O., Tano, T.and Imai, K., 1985, Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans, Applied and Environmental Microbiology 49:1401-1406.
Sung, Y., Ritalahti, K.M., Apkarian, R.P. and Löffler, F.E., 2006a, Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate, Applied and Environmental Microbiology 72:1980-1987.
Sung, Y., Fletcher, K.E., Ritalahti, K.M., Apkarian, R.P., Ramos-Hernández, N., Sanford, R.A., Mesbah, N.M. and Löffler, F.E., 2006b, Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium, Applied and Environmental Microbiology 72:2775-2782.
Tang, S. and Edwards E.A., 2013, Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1,1,1-trichloroethane and 1,1-dichloroethane, Philosophical Transactions of the Royal Society B: Biological Sciences 368.
Tartakovsky, B., Manuel, M.F., Beaumier, D., Greer, C.W. and Guiot, S.R., 2001, Enhanced selection of an anaerobic penta chlorophenol-degrading consortium, Biotechnology and Bioengineering 73:476-483.
Tarlera, S. and Denner E.B.M., 2003, Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-Proteobacteria, International Journal of Systematic and Evolutionary Microbiology 53:1085-1091.
Tanaka, K., Stackebrandt, E., Tohyama, S. and Eguchi, T., 2000, Desulfovirga adipica gen. nov., sp. nov., an adipate-degrading, gram-negative, sulfate-reducing bacterium, International Journal of Systematic and Evolutionary Microbiology 50:639-644.
Thrash, J.C., Ahmadi, S., Torok, T. and Coates, J.D., 2010a, Magnetospirillum bellicus sp. nov., a novel dissimilatory perchlorate-reducing alphaproteobacterium isolated from a bioelectrical reactor, Applied and Environmental Microbiology 76:4730-4737.
Thrash, J.C., Pollock, J., Torok, T. and Coates, J.D., 2010b, Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov. and Propionivibrio militaris, sp. nov., Applied Microbiology and Biotechnology 86:335-343.
Thomsen, T.R., Kong, Y. and Nielsen, P.H., 2007, Ecophysiology of abundant denitrifying bacteria inactivated sludge, FEMS Microbiology Ecology 60:370-382.
Torii, H., Machida, A., Hara, H., Hatta, T. and Takizawa, N., 2013, The regulatory mechanism of 2,4,6-trichlorophenol catabolic operon expression by HadR in Ralstonia pickettii DTP0602, Microbiology 159:665-677.
Toure, O., Chen, Y. Q. and Dutta, S. K., 2003, Sinorhizobium meliloti electrotransporant containing ortho-dechlorination gene shows enhanced PCB dechlorination, Fresenius Environmental Bulletin 12:320-322.
Tsien, H.C., Brusseau, G.A., Hanson, R.S. and Waclett, L.P., 1989, Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b, Applied and Environmental Microbiology 55:3155-3161.
U.S. Environmental Protection Agency, 1996, Bioremediation action committee, EPA-542-F-96-031.
U.S. Environmental Protection Agency, 1998a, A citizen’s guide to phytoremediation, EPA-542-F-98-011.
U.S. Environmental Protection Agency, 1998b, Technical Protocol for Evaluating natural attenuation of chlorinated solvents in ground water, EPA-600-R-98-128.
U.S. Environmental Protection Agency, 2000, Engineered approaches to in situ bioremediation of chlorinated solvents: fundamentals and field applications, EPA 542-R-00-008.
U.S. Environmental Protection Agency, 2008, Incorporating sustainable practices into site remediation, EPA-542-F-08-002.
Uotila, J.S., Salkinoja-Salonen, M.S. and Apajalahti J.H., 1991, Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-I, Biodegradation 2:25-31.
Vandieken, V., Mussmann, M., Niemann, H. and Jørgensen, B.B., 2006, Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov.,psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard, International Journal of Systematic and Evolutionary Microbiology 56:1133-1139.
van Doesburg, W., van Eekert, M.H.A., Middeldorp, P.J.M., Balk, M., Schraa, G. and Stams, A.J.M., 2005, Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp., FEMS Microbiology Ecology 54:87-95.
van der Zaan, B., de Weert, J., Rijnaarts, H., de Vos, W.M., Smidt, H. and Gerritse, J., 2009, Degradation of 1,2-dicloroethane by microbial communities from river sediment at various redox conditions, Water Research 43:3207-3216.
Venkatramanan, R., Prakash, O., Woyke, T., Chain, P.S.G., Goodwin, L.A., Watson D.B., Brooks, S.C., Kostka, J.E. and Green, S.J., 2013, Genome sequences for three denitrifying bacterial strains isolated from a uranium- and nitrate-contaminated subsurface environment, Genome Announcements 1.
Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F. and Dedysh, S.N., 2011, Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase, International Journal of Systematic and Evolutionary Microbiology 61:2456-2463.
Wang, A.J., Du, D.Z., Ren, N.Q. and van Groenestijn, J.W., 2005, An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 40:1939-1949.
Wang, F., Grundmann, S., Schmid, M., Dörfler, U., Roherer, S., Munch, J.C., Hartmann, A., Jiang, X. and Schroll, R., 2007, Isolation and characterization of 1,2,4-trichlorobenzene mineralizing Bordetella sp. and its bioremediation potential in soil, Chemosphere 67:896-902.
Wang, W., Richardson, A.R., Martens-Habbena, W., Stahl, D.A., Fang, F.C.and Hansen, E.J., 2008, Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis, Journal of bacteriology 190:7762-7772.
Wang, Y.B.,Wu, C.Y., Wang, X.J. and Zhou, S.G., 2009, The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01, Journal of Hazardous Materials 164:941-947.
Wackett, L.P. and Householder, S.R., 1989, Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase, Applied and Environmental Microbiology 55:2723-2725
Winter, R.B., Yen, K.M. and Ensley, B.D., 1989, Efficient degradation of trichloroethylene by a recombinant Escherichia coli., Nature Biotechnology 7:282-285.
Wu, C.Y., Zhuang, L., Zhou, S.G., Li, F.B. and Li, X.M., 2010a, Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid byan iron-reducing bacterium Comamonas koreensis CY01, FEMS Microbiology Ecology 71:106-113.
Wu, W., Carley, J., Green, S.J., Luo, J., Kelly, S.D., van Nostrand, J., Lowe, K., Mehlhorn, T., Carroll, S., Boonchayanant, B., Löfller, F.E., Watson, D., Kemner, K.M., Zhou, J., Kitanidis, P.K., Kostka, J.E., Jardine, P.M. and Criddle, C.S., 2010b, Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface, Environmental Science and Technology 44:5104-5111.
Xu, J., Chen, X., Wang, X. and Zhou, Y., 2011a, Reclassification of Solimonas soli (Kim et al., 2007) and Singularimonas variicoloris (Friedrich et al., 2008) as Sinobacter soli comb. nov. and Sinobacter variicoloris comb. nov. and emended description of the genus Sinobacter (Zhou et al., 2008), African Journal of Microbiology Research 5:2493-2499.
Xu, X., Yang, J. and Cheng, Y., 2011b, Pharmacokinetic Study of Viral Vectors for Gene Therapy: Progress and Challenges, Viral Gene Therapy, 435-450.
Yao, S., Ni, J., Ma, T. and Li, C., 2013, Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2, Bioresource Technology 39:80-86.
Yang, S., Lin,
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.97.189
論文開放下載的時間是 校外不公開

Your IP address is 3.144.97.189
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code