Responsive image
博碩士論文 etd-0720115-110035 詳細資訊
Title page for etd-0720115-110035
論文名稱
Title
海洋真菌Trichoderma atroviride及T. reesi之化學成分及其活性研究
Studies on the Chemical Constituents of the Marine Derived fungi, Trichoderma atroviride and T.reesi and Their Biological Activities.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
240
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-09
繳交日期
Date of Submission
2015-09-08
關鍵字
Keywords
木黴菌、口腔癌、鮑氏不動桿菌、細胞毒殺、質譜分子網絡、胜肽
Acinetobacter baumannii, Trichoderma spp., peptaibol, mass spectral molecular networking, oral cancer, cytotoxic
統計
Statistics
本論文已被瀏覽 5769 次,被下載 42
The thesis/dissertation has been browsed 5769 times, has been downloaded 42 times.
中文摘要
鮑氏不動桿菌(Acinetobacter baumannii)為一種伺機性感染的細菌易於發展成抗藥性的菌株,因此容易在醫院內擴散開甚至造成致死率上升。因此,開發新穎的抗生素為日前重要的研究目標之一。另一方面,海洋微生物開發了一系列特殊的有機配位體,為了能幫助海洋微生物收集鐵、鋅與其它微量金屬,其中一些稱為鐵載體(Siderophore)。微量金屬源也被視為抗菌成份或是用以治療患者感染的病菌。
此研究主旨是為了找尋新型的活性化合物,以發展成有效的抗生素,本次研究之樣品為從採樣屏東萬里桐的海綿,經品種鑑定為似雪海綿屬。進行分離純化,從34株細菌及5株真菌中,經由活性篩選得到兩株海洋真菌MR13-TR01及MR13-TA01,分別對實驗室中的九株指標菌進行活性測試,顯示出良好的抗菌活性,特別是鮑氏不動桿菌。另對CAS 培養基做鐵螯合測試也顯示出良好的活性。經由真菌ITS序列鑑定為瑞氏木黴菌(Trichoderma reesei)及深綠木黴菌(Trichoderma atroviride)。經由活性導引,從這兩株真菌的萃取物中得到四個新型的胜肽(peptaibols)類化合物,另外,有十六個已知的化合物被分離出,分別有四個胜肽類化合物、五個聚酮類、兩個雙胺基酸環化衍生物、兩個倍半萜、一個糖醇、一個嘧啶、及一個雙糖類衍生物。上述化合物結構由各種光譜資料﹙紫外光譜、紅外光譜、圆二色谱、核磁共振光譜及質譜﹚和化學方法加以證實。生物活性測試結果顯示,八個胜肽類化合物對鮑氏不動桿菌有良好的抑制活性,特別是化合物1活性最佳,且利用CAS 活性測試顯示出亦有鐵螯合作用之有效性。最特別的是,化合物5 對於口腔癌細胞株CAL 27有良好之活性,其IC50 = 13.0 ug/mL。
Abstract
Acinetobacter baumannii is an opportunistic pathogen, which easily develop a drug-resistant strain and is liable to spread and increase the mortality in the hospital.Therefore, to develop new antibiotics to treat the patients with infection by A. baumannii became an important research object. On the other hand, marine microorganisms develop a series of specific organic-ligand systems to assist them harvest iron, zinc, and other trace metals to survive in the trace metals-insufficient seawater environments. These organic ligands are species-specific to influence the growth of other microorganisms by scavenging environmental trace metals. Such ligands can be also regarded as anti-microbial components to treat patients infected with pathogens.
To search novel anti-microbial secondary metabolites from marine microorganisms, we found that two marine fungi, Trichoderma reesi (MR13-TR01) and T. atroviride (MR13-TA01), isolated from a sponge Niphates collected from Wan-Li Tong, Pingtung County, showed clearly good inhibitory effects against eight bacterial indicators and one fungal indicator, especially for A. baumannii. Both also showed the iron-chelating effect by the Chrome azurol S (CAS) assay. Through the bioactivity-guided fractionation isolation (BGFI), we isolated four new peptaibols, as well as 16 known compounds, including four peptaibols, five polyketides, two known diketopiperazines, two sesquiterpenes, one alitol, one nucleoside, and one disaccharide, from the extracts of the two marine fungi. The structures of the compounds mentioned above were elucidated by spectroscopic (UV, IR, CD, NMR, HRESI-MS) and chemical methods. In addition, eight peptaibols showed inhibitory effect against A. baumannii, especially for compound 1. And some of them also had the clear iron-chelating effect by the CAS assay. In addition to the compound 5 had a great activity for the oral cancer cell CAL 27, and the IC50 = 13.0 ug/mL。
目次 Table of Contents
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 viii
Trichoderma atroviride 和Trichoderma reesi 所分離得到之化合物 x
第一章 緒論 1
第一節 前言 1
第二節 木黴菌屬型態分布及應用 2
第三節 木黴菌屬研究背景 3
第四節 木黴菌屬之成分研究及文獻回顧 4
一、 抗菌活性 5
二、Peptaibols之溶血性效果10 9
三、細胞膜穿透 10
第五節Trichoderma spp.其他類型之化合物 12
第二章 材料方法與分離流程 24
第一節 木黴菌屬Trichoderma spp.鑑定 24
第二節 抗菌活性篩選之指標菌 24
第三節、鮑氏不動桿菌 26
第四節 木黴菌屬(Trichoderma spp.)成分之萃取及實驗方法 27
一、分離流程 27
二、Peptaibols之酸水解及Chiral HPLC 之分析73 31
三、Peptaibols之Marfey’s method分析74, 75, 76 32
第三章 結構解析 33
第一節 Peptaibols之解析 33
第二節Paracelsin B (1) 之結構證明 35
第三節Trichocellins A-IX (2*)之結構證明 46
第四節Trichocellin C-I (3*)之結構證明 56
第五節Trichocellins C-I I (4*)之結構證明 65
第六節 Trichocellins C-III(5*)之結構證明 74
第七節Paracelsin E (6)之結構證明 83
第八節 Trichocellins A-V (7)結構證明 92
第九節Trichocellins A-IV(8) 之結構證明 101
第十節Trichodermanone C (9)之結構證明 114
第十一節 Trichodermanone B(10)之結構證明 119
第十二節 Trichodermanone A (11)之結構證明 124
第十三節Sorbicillinol (12)之結構證明 129
第十四節 6-n-pentyl-α-pyrone (13)之結構證明 134
第十五節 10(Z)-cyclonerotriol (14)之結構證明 138
第十六節 10(E)-cyclonerotriol(15)之結構證明 143
第十七節 cyclo(D-Tyr-D-Pro) (16) 之結構證明 148
第十八節 Cyclo-Ala-Pro (17)之結構證明 153
第十九節Mannitol (18)之結構證明 158
第二十節Adenosine (19)之結構證明 161
第二十一節1, 3, 4, 6-Tetra-O-acetyl-β-D-fructofuranosyl) 2, 3, 4, 6-tetra -O-acetyl-α-D-glucopyranoside (20) 之結構證明 166
第四章 最佳生長環境及活性測試 170
第五章 Trichoderma spp.之代謝物比對 172
第六章 生物活性測試 179
第一節 Punch-plate Assay Method 179
第二節 抗菌活性測試 MIC 181
第三節 CAS agar diffusion assay 90 182
第四節 細胞毒殺 183
第七章 結論 186
第八章 實驗材料與方法 187
第二節 儀器設備與試藥 190
第三節 海洋共生菌純化與分離 193
第四節 化合物物理性質與光譜數據整理 195
第九章 參考文獻 207
參考文獻 References
1. Aguilar, A. I., T.; Magnien, E., Extremophile microorganisms as cell factories: support from the European Union. Extremophiles 1998, 25, 35-94.
2. Blunt, J. W. C., B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R., Marine natural products. Nat. Prod. Rep. 2008, 25, 35-94.
3. Ireland, T. S. B. a. C. M., Marine-derived fungi: a chemically and biologically diverse group of microorganisms. N a t . P r o d . R e p 2004, 21, 143-163.
4. Harman, G. E.; Howell, C. R.; Viterbo, A.; Chet, I.; Lorito, M., Trichoderma species [mdash] opportunistic, avirulent plant symbionts. Nat Rev Micro 2004, 2 (1), 43-56; Zeilinger, S.; Omann, M., Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Bio 2007, 1, 227-34; Schuster, A.; Schmoll, M., Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology 2010, 87 (3), 787-799.
5. Yount, M. R. Y. a. N. Y., Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacological Reviews 2003, 55, 27-55.
6. Harman, G. E., Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology 2006, 96 (2), 190-194.
7. Contreras-Cornejo, H. A.; Macias-Rodriguez, L.; Beltran-Pena, E.; Herrera-Estrella, A.; Lopez-Bucio, J., Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 2011, 6 (10), 1554-63.
8. Daniel, J. F. d. S.; Rodrigues Filho, E., Peptaibols of Trichoderma. Natural Product Reports 2007, 24 (5), 1128-1141.
9. THOMAS DEGENKOLB, A. B., WALTER GAMS, BRIGITTE SCHLEGEL and UDO GR¨AFE, The Occurrence of Peptaibols and Structurally Related Peptaibiotics in Fungi and their Mass Spectrometric Identification via Diagnostic Fragment Ions. Journal of Peptide Science 2003, 666-678.
10. A. SZEKERES1, B. L., L. KREDICS3, ZSUZSANNA ANTAL3, L. HATVANI1, L. MANCZINGER1, C. VÁGVÖLGYI1 PEPTAIBOLS AND RELATED PEPTAIBIOTICS OF TRICHODERMA - A REVIEW. Acta Microbiol Immunol Hung 2005, 52 (2), 137-168.
11. Duval, D.; Cosette, P.; Rebuffat, S.; Duclohier, H.; Bodo, B.; Molle, G., Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity. Biochimica et Biophysica Acta (BBA) - Biomembranes 1998, 1369 (2), 309-319.
12. A. RITIENI, V. F., D. NANNO, G. Fkmmo, , PARACELSIN E, A NEW PEPTAIBOL FROM TRICHODERMA SATURNISPOR UM. Journal of Natural Products 1995, 11, 1745-1748.
13. Dittrich, B.; Bond, C. S.; Kalinowski, R.; Spackman, M. A.; Jayatilaka, D., Revised electrostatics from invariom refinement of the 18-residue peptaibol antibiotic trichotoxin A50E. CrystEngComm 2010, 12 (8), 2419-2423.
14. Walsh2, A. J. D. L. a. T. J., Antifungal Peptides: Novel Therapeutic Compounds against
Emerging Pathogens. Antimicrob. Agents Chemother 1999, 43, 1-11.
15. Lucaciu, M.; Rebuffat, S.; Goulard, C.; Duclohier, H.; Molle, G.; Bodo, B., Interaction of the 14-residue peptaibols, harzianins HC, with lipid bilayers: permeability modifications and conductance properties. Biochimica et Biophysica Acta (BBA) - Biomembranes 1997, 1323 (1), 85-96.
16. Rebuffat, S.; Goulard, C.; Hlimi, S.; Bodo, B., Two unprecedented natural Aib-peptides with the (Xaa-Yaa-Aib-Pro) motif and an unusual C-terminus: structures, membrane-modifying and antibacterial properties of pseudokonins KL III and KL VI from the fungus Trichoderma pseudokoningii. Journal of Peptide Science 2000, 6 (10), 519-533.
17. Grigoriev, P.; Schlegel, R.; Dornberger, K.; Gräfe, U., Formation of membrane channels by chrysospermins, new peptaibol antibiotics. Biochimica et Biophysica Acta (BBA) - Biomembranes 1995, 1237 (1), 1-5.
18. Wickel, S. M.; Citron, C. A.; Dickschat, J. S., 2H-Pyran-2-ones from Trichoderma viride and Trichoderma asperellum. European Journal of Organic Chemistry 2013, 2013 (14), 2906-2913.
19. Cooney, J. M.; Lauren, D. R.; Poole, P. R.; Whitaker, G., Microbial Transformation of the Trichoderma Metabolite 6-n-Pentyl-2H-pyran-2-one. Journal of Natural Products 1997, 60 (12), 1242-1244.
20. Evidente, A.; Cabras, A.; Maddau, L.; Serra, S.; Andolfi, A.; Motta, A., Viridepyronone, a New Antifungal 6-Substituted 2H-Pyran-2-one Produced by Trichoderma viride. Journal of Agricultural and Food Chemistry 2003, 51 (24), 6957-6960.
21. Trifonov, L. S.; Bieri, J. H.; Prewo, R.; Dreiding, A. S.; Hoesch, L.; Rast, D. M., Isolation and structure elucidation of three metabolites from verticillium intertextum: sorbicillin, dihydrosorbicillin and bisvertinoquinol. Tetrahedron 1983, 39 (24), 4243-4256.
22. Nicolaou, K. C.; Vassilikogiannakis, G.; Simonsen, K. B.; Baran, P. S.; Zhong, Y.-L.; Vidali, V. P.; Pitsinos, E. N.; Couladouros, E. A., Biomimetic Total Synthesis of Bisorbicillinol, Bisorbibutenolide, Trichodimerol, and Designed Analogues of the Bisorbicillinoids. Journal of the American Chemical Society 2000, 122 (13), 3071-3079.
23. Abe, N.; Yamamoto, K.; Hirota, A., Novel Fungal Metabolites, Demethylsorbicillin and Oxosorbicillinol, Isolated from Trichoderma sp. USF-2690. Bioscience, Biotechnology, and Biochemistry 2000, 64 (3), 620-622.
24. Sam Sperry, G. J. S., § and Phillip Crews*,‡, Vertinoid Polyketides from the Saltwater Culture of the Fungus Trichoderma longibrachiatum Separated from a Haliclona Marine Sponge†. J. Org. Chem. 1998, 63, 10011-10014.
25. Maskey, R. P.; Grün-Wollny, I.; Laatsch, H., Sorbicillin Analogues and Related Dimeric Compounds from Penicillium notatum. Journal of Natural Products 2005, 68 (6), 865-870.
26. Ma, L.; Liu, W.; Huang, Y.; Rong, X., Two acid sorbicillin analogues from saline lands-derived fungus Trichoderma sp. J Antibiot 2011, 64 (9), 645-647.
27. Abe, N.; Murata, T.; Hirota, A., Novel Oxidized Sorbicillin Dimers with 1,1-Diphenyl-2-picrylhydrazyl-Radical Scavenging Activity from a Fungus. Bioscience, Biotechnology, and Biochemistry 1998, 62 (11), 2120-2126.
28. Kontani, M.; Sakagami, Y.; Marumo, S., First β-1,6-glucan biosynthesis inhibitor, bisvertinolone isolated from fungus, Acremonium strictum and its absolute stereochemistry. Tetrahedron Letters 1994, 35 (16), 2577-2580.
29. Hong, R.; Chen, Y.; Deng, L., Catalytic Enantioselective Total Syntheses of Bisorbicillinolide, Bisorbicillinol, and Bisorbibutenolide. Angewandte Chemie International Edition 2005, 44 (22), 3478-3481.
30. Andrade, R.; Ayer, W. A.; Trifonov, L. S., The metabolites of Trichoderma longibrachiatum. Part II The structures of trichodermolide and sorbiquinol. Canadian Journal of Chemistry 1996, 74 (3), 371-379.
31. Guo, W.; Peng, J.; Zhu, T.; Gu, Q.; Keyzers, R. A.; Li, D., Sorbicillamines A–E, Nitrogen-Containing Sorbicillinoids from the Deep-Sea-Derived Fungus Penicillium sp. F23–2. Journal of Natural Products 2013, 76 (11), 2106-2112.
32. Lin Du1), T. Z., LiYuan Li1), Shengxin Cai1), Boyu Zhao1), Qianqun Gu1), Cytotoxic Sorbicillinoids and Bisorbicillinoids from a Marine-Derived Fungus Trichoderma sp. Can J Microbiol 2009, 57, 220-223.
33. Xu, X.-X.; Zhu, Y.-H., Total synthesis of koninginin a and its diastereoisomer. Tetrahedron Letters 1995, 36 (50), 9173-9176.
34. Parker, S. R.; Cutler, H. G.; Schreiner, P. R., Koninginin E: Isolation of a Biologically Active Natural Product from Trichoderma koningii. Bioscience, Biotechnology, and Biochemistry 1995, 59 (9), 1747-1749.
35. Garo, E.; Starks, C. M.; Jensen, P. R.; Fenical, W.; Lobkovsky, E.; Clardy, J., Trichodermamides A and B, Cytotoxic Modified Dipeptides from the Marine-Derived Fungus Trichoderma virens. Journal of Natural Products 2003, 66 (3), 423-426.
36. Huang, R.; Yan, T.; Peng, Y.; Zhou, X.; Yang, X.; Liu, Y., Diketopiperazines from the Marine Sponge Axinella sp. Chemistry of Natural Compounds 2014, 50 (1), 191-193.
37. Saleki, M.; Colgin, N.; Kirby, J. A.; Cobb, S. L.; Ali, S., Evaluation of two cyclic di-peptides as inhibitors of CCL2 induced chemotaxis. MedChemComm 2013, 4 (5), 860-864.
38. Takaya, Y.; Furukawa, T.; Miura, S.; Akutagawa, T.; Hotta, Y.; Ishikawa, N.; Niwa, M., Antioxidant Constituents in Distillation Residue of Awamori Spirits. Journal of Agricultural and Food Chemistry 2007, 55 (1), 75-79.
39. Sun Y1, T. L., Huang YF, Sha Y, Pei YH., A new cyclotetrapeptide from marine fungus Trichoderma reesei. Pharmazie 2006, 61 (9), 809-810.
40. Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C.; Monaco, V.; Goulard, C.; Rebuffat, S.; Bodo, B., Effect of Nα-Acyl Chain Length on the Membrane-Modifying Properties of Synthetic Analogs of the Lipopeptaibol Trichogin GA IV. Journal of the American Chemical Society 1996, 118 (21), 4952-4958.
41. Gatto, E.; Bocchinfuso, G.; Palleschi, A.; Oncea, S.; De Zotti, M.; Formaggio, F.; Toniolo, C.; Venanzi, M., 3D Structure, Dynamics, and Activity of Synthetic Analog of the Peptaibiotic Trichodecenin I. Chemistry & Biodiversity 2013, 10 (5), 887-903.
42. Augeven-Bour, I.; Rebuffat, S.; Auvin, C.; Goulard, C.; Prigent, Y.; Bodo, B., Harzianin HB I, an 11-residue peptaibol from Trichoderma harzianum: isolation, sequence, solution synthesis and membrane activity. Journal of the Chemical Society, Perkin Transactions 1 1997, (10), 1587-1594.
43. Rebuffat, S.; Hlimi, S.; Prigent, Y.; Goulard, C.; Bodo, B., Isolation and structural elucidation of the 11-residue peptaibol antibiotic, harzianin HK VI. Journal of the Chemical Society, Perkin Transactions 1 1996, (16), 2021-2027.
44. Iida, A.; Mihara, T.; Fujita, T.; Takaishi, Y., Peptidic immunosuppressants from the fungus Trichoderma polysporum. Bioorganic & Medicinal Chemistry Letters 1999, 9 (24), 3393-3396.
45. Patamaporn Pruksakorn1), M. A., Liu Liu1), Prashini Moodley2), William Robert Jacobs Jr.3), Motomasa Kobayashi1), Action-Mechanism of Trichoderin A, an Anti-dormant Mycobacterial Aminolipopeptide from Marine Sponge-Derived Trichoderma sp. Biological and Pharmaceutical Bulletin 2011, 34, 1287-1290.
46. Pruksakorn, P.; Arai, M.; Kotoku, N.; Vilchèze, C.; Baughn, A. D.; Moodley, P.; Jacobs Jr, W. R.; Kobayashi, M., Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorganic & Medicinal Chemistry Letters 2010, 20 (12), 3658-3663.
47. Ren, J.; Xue, C.; Tian, L.; Xu, M.; Chen, J.; Deng, Z.; Proksch, P.; Lin, W., Asperelines A−F, Peptaibols from the Marine-Derived Fungus Trichoderma asperellum. Journal of Natural Products 2009, 72 (6), 1036-1044.
48. Li, G.-H.; Zheng, L.-J.; Liu, F.-F.; Dang, L.-Z.; Li, L.; Huang, R.; Zhang, K.-Q., New cyclopentenones from strain Trichoderma sp. YLF-3. Natural Product Research 2009, 23 (15), 1431-1435.
49. Akiko Fujiwara1), T. O., Setsuko Masuda1), Yoshihiko Shiomi1), Chikara Miyamoto1), Yuzuru Sekine1), Masaaki Tazoe1), Mitsuhiko Fujiwara1) 2), Fermentation, Isolation and Characterization of Isonitrile Antibiotics. Agricultural and Biological Chemistry 1982, 46, 1803-1809.
50. TARO AMAGATA1), Y. U., KATSUHIKO MINOURA1), TADAYOSHI ITO2), ATSUSHI NUMATA1), Cytotoxic Substances Produced by a Fungal Strain from a Sponge: Physico-chemical Properties and Structures. The Journal of Antibiotics 1998, 51, 33-40.
51. TSUKASA MATSUMOTO1), A. I., YUUICHI YAMAGUCHI1), ROKURO MASUMA1), HIDEAKI UI1), KAZURO SHIOMI1), HARUKI YAMADA1), SATOSHI OMURA1), Novel Cyclopentanone Derivatives Pentenocins A and B, with Interleukin-1 β Converting Enzyme Inhibitory Activity, Produced by Trichoderma hamatum FO-6903. The Journal of Antibiotics 1999, 52, 754-757.
52. RYUJU HASHIMOTO1), S. T., KUNIKATSU HAMANO2), AKIRA NAKAGAWA1), A New Melanin Biosynthesis Inhibitor, Melanoxadin from Fungal Metabolite by Using the Larval Haemolymph of the Silkworm, Bombyx mori. The Journal of Antibiotics 1995, 48, 1052-1054.
53. Claydon, N.; Hanson, J. R.; Truneh, A.; Avent, A. G., Harzianolide, a butenolide metabolite from cultures ofTrichoderma harzianum. Phytochemistry 1991, 30 (11), 3802-3803.
54. Vinale, F.; Manganiello, G.; Nigro, M.; Mazzei, P.; Piccolo, A.; Pascale, A.; Ruocco, M.; Marra, R.; Lombardi, N.; Lanzuise, S.; Varlese, R.; Cavallo, P.; Lorito, M.; Woo, S., A Novel Fungal Metabolite with Beneficial Properties for Agricultural Applications. Molecules 2014, 19 (7), 9760.
55. Koshino, H.; Togiya, S.; Terada, S.-i.; Yoshihara, T.; Sakamura, S.; Shimanuki, T.; Sato, T.; Tajimi, A., New Fungitoxic Sesquiterpenoids, Chokols A-G, from Stromata of <i>Epichloe typhina</i> and the Absolute Configuration of Chokol E. Agricultural and Biological Chemistry 1989, 53 (3), 789-796.
56. York, W. S.; Oates, J. E.; van Halbeek, H.; Darvill, A. G.; Albersheim, P.; Tiller, P. R.; Dell, A., Location of the O-acetyl substituents on a nonasaccharide repeating unit of sycamore extracellular xyloglucan. Carbohydrate Research 1988, 173 (1), 113-132.
57. Augustiniak, H.; Forche, E.; Reichenbach, H.; Wray, V.; Gräfe, U.; Höfle, G., Isolierung und Strukturaufklärung von Ergokonin A und B; zwei neue antifungische Sterol-Antibiotika aus Trichoderma koningii. Liebigs Annalen der Chemie 1991, 1991 (4), 361-366.
58. Arpha, K.; Phosri, C.; Suwannasai, N.; Mongkolthanaruk, W.; Sodngam, S., Astraodoric Acids A–D: New Lanostane Triterpenes from Edible Mushroom Astraeus odoratus and Their Anti-Mycobacterium tuberculosis H37Ra and Cytotoxic Activity. Journal of Agricultural and Food Chemistry 2012, 60 (39), 9834-9841.
59. Lu, Q.-Q.; Tian, J.-M.; Wei, J.; Gao, J.-M., Bioactive metabolites from the mycelia of the basidiomycete Hericium erinaceum. Natural Product Research 2014, 28 (16), 1288-1292.
60. Liao, Y.-W.; Chen, C.-R.; Hsu, J.-L.; Cheng, H.-L.; Shih, W.-L.; Kuo, Y.-H.; Huang, T.-C.; Chang, C.-I., Sterols from the Stems of Momordica charantia. Journal of the Chinese Chemical Society 2011, 58 (7), 893-898.
61. Wu, J.; Suzuki, T.; Choi, J.-H.; Yasuda, N.; Noguchi, K.; Hirai, H.; Kawagishi, H., An unusual sterol from the mushroom Stropharia rugosoannulata. Tetrahedron Letters 2013, 54 (36), 4900-4902.
62. Balieu, S.; Hallett, G. E.; Burns, M.; Bootwicha, T.; Studley, J.; Aggarwal, V. K., Toward Ideality: The Synthesis of (+)-Kalkitoxin and (+)-Hydroxyphthioceranic Acid by Assembly-Line Synthesis. Journal of the American Chemical Society 2015, 137 (13), 4398-4403.
63. Kovalenko, O. O.; Adolfsson, H., Highly Efficient and Chemoselective Zinc-Catalyzed Hydrosilylation of Esters under Mild Conditions. Chemistry – A European Journal 2015, 21 (7), 2785-2788.
64. Matsubara, K.; Iura, T.; Maki, T.; Nagashima, H., A Triruthenium Carbonyl Cluster Bearing a Bridging Acenaphthylene Ligand:  An Efficient Catalyst for Reduction of Esters, Carboxylic Acids, and Amides by Trialkylsilanes. The Journal of Organic Chemistry 2002, 67 (14), 4985-4988.
65. CHIKARA SHINOHARA1), K. H., TOSHIHIRO CHIKANISHI1), TADASHI KIKUCHI1), AKIRA ENDO1), 11-Keto-9(E), 12(E)-octadecadienoic Acid, a Novel Fatty Acid that Enhances Fibrinolytic Activity of Endothelial Cells. The Journal of Antibiotics 1999, 62, 171-174.
66. An, J.; Work, D. N.; Kenyon, C.; Procter, D. J., Evaluating a Sodium Dispersion Reagent for the Bouveault–Blanc Reduction of Esters. The Journal of Organic Chemistry 2014, 79 (14), 6743-6747.
67. Sun, P.; Huo, J.; Kurtán, T.; Mándi, A.; Antus, S.; Tang, H.; Draeger, S.; Schulz, B.; Hussain, H.; Krohn, K.; Pan, W.; Yi, Y.; Zhang, W., Structural and Stereochemical Studies of Hydroxyanthraquinone Derivatives from the Endophytic Fungus Coniothyrium sp. Chirality 2013, 25 (2), 141-148.
68. Kurkin, V. A.; Zaitseva, N. V.; Avdeeva, E. V.; Daeva, E. D.; Kadentsev, V. I., Anthraquinones and naphthalene derivatives of Rumex confertus. Chemistry of Natural Compounds 2013, 49 (1), 135-136.
69. Olennikov, D. N.; Kashchenko, N. I., Calendosides I–IV, New Quercetin and Isorhamnetin Rhamnoglucosides from Calendula officinalis. Chemistry of Natural Compounds 2014, 50 (4), 633-637.
70. Kuo, S. C. C., S. C.; Wang, H. Y.; Lai, J. F.; Chen, P. C.; Shiau, Y. R.; Huang, I. W.; Lauderdale, T. L.; Hospitals, T., Emergence of extensively drug-resistant Acinetobacter baumannii complex over 10 years: Nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. BMC Infect. Dis 2012, 12, 200.
71. Rice, L. B., Progress and challenges in implementing the research on ESKAPE pathogens. Infect. Control Hosp. Epidemiol 2010, 31, 7-10.
72. Kuo, L. C.; Lai, C. C.; Liao, C. H.; Hsu, C. K.; Chang, Y. L.; Chang, C. Y.; Hsueh, P. R., Multidrug-resistant Acinetobacter baumannii bacteraemia: clinical features, antimicrobial therapy and outcome. Clinical Microbiology and Infection 2007, 13 (2), 196-198.
73. Kiyonaga Fujii, Y. I., Tsuyoshi Mayumi, Hisao Oka, Makoto Suzuki and Ken-ichi Harada, A Nonempirical Method Using LC/MS for Determination of the Absolute Configuration of Constituent Amino Acids in a Peptide: Elucidation of Limitations of Marfey’s Method and of Its Separation Mechanism. Anal. Chem. 1997, 69, 3346-3352.
74. Marfey, P., Determination ofD-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Research Communications 1984, 49 (6), 591-596.
75. Bhushan, R.; Brückner, H., Marfey’s reagent for chiral amino acid analysis: A review. Amino Acids 2004, 27 (3-4), 231-247.
76. R. Bhushan, H. B., Use of Marfey’s reagent and analogs for chiral amino acid analysis: Assessment and applications to natural products and biological systems. Journal of Chromatography B 2011, 879, 3148-3161.
77. Goodlett, D. R.; Abuaf, P. A.; Savage, P. A.; Kowalski, K. A.; Mukherjee, T. K.; Tolan, J. W.; Corkum, N.; Goldstein, G.; Crowther, J. B., Peptide chiral purity determination: hydrolysis in deuterated acid, derivatization with Marfey's reagent and analysis using high-performance liquid chromatography-electrospray ionization-mass spectrometry. Journal of Chromatography A 1995, 707 (2), 233-244.
78. Shun-ichi Wada, T. N., Akira Iida, Nobuo Toyama and Tetsuro Fujita, Primary structures of antibiotic peptides, Trichocellins-A and -B from Trichoderma viride. Tetrahedron Lett. 1994, 19, 3095-3098.
79. Neumann, K.; Abdel-Lateff, A.; Wright, A. D.; Kehraus, S.; Krick, A.; König, G. M., Novel Sorbicillin Derivatives with an Unprecedented Carbon Skeleton from the Sponge-Derived Fungus Trichoderma Species. European Journal of Organic Chemistry 2007, 2007 (14), 2268-2275.
80. Cooney, J. M.; Lauren, D. R., Biotransformation of the Trichoderma Metabolite 6-n-Pentyl-2H-pyran-2-one (6PAP) by Selected Fungal Isolates. Journal of Natural Products 1999, 62 (5), 681-683.
81. P.K. Tarus, C. C. L. a.-T., A.W. Wanyonyi and S.C. Chhabra BIOACTIVE METABOLITES FROM TRICHODERMA HARZIANUM AND TRICHODERMA LONGIBRACHIATUM. Bull. Chem. Soc. Ethiop. 2003, 17 (2), 185-190.
82. Dombray, T.; Blanc, A.; Weibel, J.-M.; Pale, P., Gold(I)-Catalyzed Cycloisomerization of β-Alkynylpropiolactones to Substituted α-Pyrones. Organic Letters 2010, 12 (23), 5362-5365.
83. Kasitu, G. C.; ApSimon, J. W.; Blackwell, B. A.; Fielder, D. A.; Greenhalgh, R.; Miller, J. D., Isolation and characterization of culmorin derivatives produced by Fusariumculmorum CMI 14764. Canadian Journal of Chemistry 1992, 70 (5), 1308-1316.
84. Wang, L.; Zheng, C.-D.; Li, X.-J.; Gao, J.-M.; Zhang, X.-C.; Wei, G.-H., Cyclo(PRO-TYR) from an endophytic rhizobium isolated from Glycyrrhiza uralensis. Chemistry of Natural Compounds 2012, 47 (6), 1040-1042.
85. M. Lenman, M.; Lewis, A.; Gani, D., Synthesis of fused 1,2,5-triazepine-1,5-diones and some N2- and N3-substituted derivatives: potential conformational mimetics for cis-peptidyl prolinamides 1. Journal of the Chemical Society, Perkin Transactions 1 1997, (16), 2297-2312.
86. Venditti, A.; Serrilli, A. M.; Bianco, A., Iridoids from Bellardia trixago (L.) All. Natural Product Research 2013, 27 (15), 1413-1416.
87. Abou-Hussein, D. R.; Badr, J. M.; Youssef, D. T. A., Dragmacidoside: a new nucleoside from the Red Sea sponge Dragmacidon coccinea. Natural Product Research 2014, 28 (15), 1134-1141.
88. Uenishi, J. i.; Ueda, A., Synthesis of (+)-sucrose via β-d-psicofuranosylation. Tetrahedron: Asymmetry 2008, 19 (18), 2210-2217.
89. Yang, J. Y.; Sanchez, L. M.; Rath, C. M.; Liu, X.; Boudreau, P. D.; Bruns, N.; Glukhov, E.; Wodtke, A.; de Felicio, R.; Fenner, A.; Wong, W. R.; Linington, R. G.; Zhang, L.; Debonsi, H. M.; Gerwick, W. H.; Dorrestein, P. C., Molecular Networking as a Dereplication Strategy. Journal of Natural Products 2013, 76 (9), 1686-1699.
90. Vinale, F.; Nigro, M.; Sivasithamparam, K.; Flematti, G.; Ghisalberti, E. L.; Ruocco, M.; Varlese, R.; Marra, R.; Lanzuise, S.; Eid, A.; Woo, S. L.; Lorito, M., Harzianic acid: a novel siderophore from Trichoderma harzianum. 2013; Vol. 347, p 123-129.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code